An Online Multiple Open-Switch Fault Diagnosis Method for T-type Three-level Inverters Based on Multi-modal Deep Residual Filter Network

计算机科学 残余物 断层(地质) 变压器 滤波器(信号处理) 逆变器 工程类 电子工程 电压 算法 计算机视觉 电气工程 地质学 地震学
作者
Zhikai Xing,Yigang He,Weiwei Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (10): 10669-10679 被引量:2
标识
DOI:10.1109/tie.2022.3222663
摘要

With the development of the processing capacity of the embedded chip, it is possible to implement a machine learning algorithm in the embedded system. To achieve the fault status without poor portability, tricky threshold selection and complex rulemaking, this paper proposes a multi-modal deep residual filter network for online multiple open-switch fault diagnosis of T-type three-level inverter. It contains low-rank matrix fusion (LMF), deep residual filter network (DRFN), and cross transformer mechanism. The LMF fuses the voltage signal and the current signal for obtaining the unified representation. And then, the DRFN filters noise adaptively and extracts information effectively. Finally, the cross-transformer mechanism output the fault state of the T-type three-level inverter. The data sets consist of the dc-link voltage and load side current of the inverter control system. The data time window is selected as 20 ms. Through the real-time calculation of online monitored data, the experimental results show the effectiveness of the proposed fault diagnosis approach. Moreover, the accuracy of fault diagnosis obtains 99.18% and the average open-circuit fault diagnosis time is 21 ms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shabbow完成签到,获得积分10
1秒前
幽默的元珊完成签到,获得积分10
1秒前
昱鱼七seven完成签到,获得积分10
1秒前
张若愚发布了新的文献求助10
1秒前
GY完成签到,获得积分10
2秒前
万能图书馆应助小叮当采纳,获得10
2秒前
zz发布了新的文献求助10
2秒前
鲤鱼曼香完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
斯文败类应助文静向南采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
hzauhuangxianzhe完成签到,获得积分10
6秒前
跳跃尔容发布了新的文献求助10
6秒前
能力越小责任越小完成签到,获得积分10
7秒前
7秒前
英俊的铭应助充满希望采纳,获得10
7秒前
7秒前
cl.完成签到,获得积分10
7秒前
查查完成签到,获得积分10
8秒前
情怀应助张若愚采纳,获得10
8秒前
xwwdcg完成签到,获得积分20
8秒前
8秒前
陈雨发布了新的文献求助10
8秒前
8秒前
打打应助Eig采纳,获得30
8秒前
牧海冬完成签到,获得积分10
8秒前
Akim应助橘涂初九采纳,获得10
9秒前
科研通AI6应助tianxiangning采纳,获得10
9秒前
上山石头完成签到,获得积分10
9秒前
gustavo完成签到,获得积分10
9秒前
nonochi666发布了新的文献求助30
10秒前
vousme完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
Lemon发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879