已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 数学 进化生物学 生物 统计 航空航天工程 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助绿琦采纳,获得30
2秒前
herococa应助zcx970206采纳,获得50
2秒前
长不大小孩完成签到,获得积分10
3秒前
Jasper应助雪芹采纳,获得30
3秒前
黄浩发布了新的文献求助10
5秒前
6秒前
lyy完成签到 ,获得积分10
6秒前
7秒前
心灵尔安完成签到 ,获得积分10
9秒前
588发布了新的文献求助10
9秒前
玉ER发布了新的文献求助10
9秒前
Nowind发布了新的文献求助10
10秒前
LongH2完成签到,获得积分10
10秒前
小宇发布了新的文献求助10
11秒前
12秒前
12秒前
隐形曼青应助张董事长采纳,获得10
14秒前
15秒前
hhhhhh完成签到 ,获得积分20
16秒前
kailin发布了新的文献求助10
16秒前
18秒前
20秒前
20秒前
lisui完成签到 ,获得积分10
21秒前
luckydog完成签到 ,获得积分10
21秒前
orixero应助快乐芝麻采纳,获得10
21秒前
共享精神应助xixi采纳,获得10
21秒前
许子峻关注了科研通微信公众号
21秒前
23秒前
精明向梦发布了新的文献求助10
23秒前
yhd完成签到,获得积分10
24秒前
25秒前
蒋蒋蒋蒋发布了新的文献求助10
25秒前
26秒前
科目三应助士心采纳,获得10
26秒前
浮游应助Du采纳,获得10
28秒前
木子发布了新的文献求助10
28秒前
黄浩完成签到,获得积分20
28秒前
小马甲应助妮妮采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969