MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 航空航天工程 数学 进化生物学 生物 统计 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石子完成签到 ,获得积分10
3秒前
cmq完成签到 ,获得积分10
10秒前
欢喜板凳完成签到 ,获得积分10
14秒前
16秒前
书生也是小郎中完成签到 ,获得积分10
19秒前
不停疯狂完成签到 ,获得积分10
21秒前
杨蒙博完成签到 ,获得积分10
21秒前
张颖完成签到 ,获得积分10
23秒前
无辜的夏兰完成签到,获得积分10
31秒前
落樱完成签到,获得积分10
35秒前
胖胖完成签到 ,获得积分0
37秒前
睡到人间煮饭时完成签到 ,获得积分10
39秒前
优雅的平安完成签到 ,获得积分10
39秒前
eternal_dreams完成签到 ,获得积分10
40秒前
鲲鹏完成签到 ,获得积分10
42秒前
qinqiny完成签到 ,获得积分10
44秒前
热心市民完成签到 ,获得积分10
46秒前
我爱科研完成签到 ,获得积分10
52秒前
哇咔咔完成签到 ,获得积分10
53秒前
shirley要奋斗完成签到 ,获得积分10
54秒前
王春琰完成签到 ,获得积分10
55秒前
was_3完成签到,获得积分10
57秒前
提桶跑路完成签到 ,获得积分10
59秒前
1分钟前
南歌子完成签到 ,获得积分10
1分钟前
乐乐应助朱鸿超采纳,获得10
1分钟前
失眠的向日葵完成签到 ,获得积分10
1分钟前
和谐的果汁完成签到 ,获得积分10
1分钟前
科研通AI5应助大鼻子采纳,获得10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
ymxlcfc完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
haochi完成签到,获得积分10
1分钟前
mf2002mf完成签到 ,获得积分10
1分钟前
1分钟前
唐难破发布了新的文献求助10
1分钟前
灰鸽舞完成签到 ,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
霓娜酱完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770515
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176558
捐赠科研通 3030553
什么是DOI,文献DOI怎么找? 1663023
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705