MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 数学 进化生物学 生物 统计 航空航天工程 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿发布了新的文献求助10
刚刚
able完成签到 ,获得积分10
1秒前
2秒前
嗯嗯嗯发布了新的文献求助10
3秒前
丘比特应助度ewf采纳,获得10
4秒前
丽丽丽发布了新的文献求助10
4秒前
yyanxuemin919发布了新的文献求助10
4秒前
蘑菇完成签到 ,获得积分10
7秒前
jam发布了新的文献求助10
7秒前
8秒前
烟花应助ccc采纳,获得10
9秒前
拉长的诗蕊完成签到,获得积分10
9秒前
10秒前
大妙妙完成签到 ,获得积分10
13秒前
13秒前
里里完成签到 ,获得积分10
14秒前
韩妙发布了新的文献求助10
15秒前
科研通AI6应助丽丽丽采纳,获得10
16秒前
太渊完成签到 ,获得积分10
16秒前
ccc发布了新的文献求助10
18秒前
爆米花应助chen采纳,获得10
21秒前
赘婿应助fahbfafajk采纳,获得10
23秒前
23秒前
李健应助韩妙采纳,获得10
24秒前
25秒前
27秒前
sun发布了新的文献求助10
28秒前
29秒前
29秒前
今天任务完成了吗完成签到,获得积分10
29秒前
XIEQ发布了新的文献求助10
29秒前
30秒前
32秒前
懒鲸鱼发布了新的文献求助10
33秒前
明兰发布了新的文献求助10
33秒前
yyanxuemin919发布了新的文献求助10
34秒前
34秒前
Andy发布了新的文献求助10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432