MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 航空航天工程 数学 进化生物学 生物 统计 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mian完成签到,获得积分10
2秒前
2秒前
Qoo完成签到,获得积分10
2秒前
Dr.wang发布了新的文献求助10
2秒前
3秒前
LCct完成签到,获得积分20
3秒前
今后应助研友_LMNz6n采纳,获得30
3秒前
zzt完成签到,获得积分10
3秒前
4秒前
4秒前
阿莱克修斯完成签到,获得积分20
4秒前
orixero应助房杨采纳,获得10
4秒前
5秒前
烟花应助整齐的泥猴桃采纳,获得10
5秒前
善学以致用应助布丁采纳,获得10
5秒前
英俊的铭应助席以亦采纳,获得10
6秒前
LCct发布了新的文献求助10
6秒前
华仔应助怕孤单的思雁采纳,获得10
6秒前
勤劳飞松完成签到,获得积分10
6秒前
雪莉酒完成签到,获得积分10
6秒前
荆轲刺秦王完成签到 ,获得积分10
7秒前
千亦完成签到,获得积分10
7秒前
fangfang发布了新的文献求助10
8秒前
能干豆芽完成签到,获得积分10
8秒前
11秒前
11秒前
11秒前
无辜的朋友完成签到,获得积分10
11秒前
junqun发布了新的文献求助10
12秒前
12秒前
inCHident完成签到,获得积分10
13秒前
13秒前
yanguowusheng完成签到 ,获得积分10
13秒前
13秒前
14秒前
liuke完成签到,获得积分10
15秒前
共享精神应助12138采纳,获得30
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012