MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 数学 进化生物学 生物 统计 航空航天工程 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pjson15376449841完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
深情安青应助章半仙采纳,获得10
2秒前
2秒前
doctor小陈发布了新的文献求助10
2秒前
科目三应助高兴的万宝路采纳,获得10
3秒前
乐乐应助顾文采纳,获得10
3秒前
4秒前
5秒前
5秒前
哦豁完成签到 ,获得积分10
5秒前
6秒前
júpiter发布了新的文献求助10
6秒前
louise应助刻苦秋尽采纳,获得10
7秒前
7秒前
hhl完成签到,获得积分10
7秒前
沉静的清涟完成签到,获得积分10
7秒前
zwjhbz完成签到,获得积分10
7秒前
8秒前
科研通AI6应助pjson15376449841采纳,获得10
8秒前
星辰大海应助wuxunxun2015采纳,获得10
9秒前
9秒前
无限荆完成签到 ,获得积分10
10秒前
英姑应助George采纳,获得10
10秒前
LZJ发布了新的文献求助10
10秒前
11秒前
搜文献的北北完成签到,获得积分10
11秒前
11秒前
Ava应助kantanna采纳,获得10
11秒前
tinale_huang发布了新的文献求助30
12秒前
tinale_huang发布了新的文献求助30
12秒前
tinale_huang发布了新的文献求助30
12秒前
tinale_huang发布了新的文献求助30
12秒前
星辰大海应助冷静火龙果采纳,获得30
12秒前
12秒前
Nico完成签到 ,获得积分10
12秒前
13秒前
亦木发布了新的文献求助10
14秒前
Lucas应助nuonuo采纳,获得10
14秒前
温婉的篮球完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812