MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 数学 进化生物学 生物 统计 航空航天工程 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lbl发布了新的文献求助10
刚刚
刚刚
梦之完成签到 ,获得积分10
刚刚
服了您完成签到 ,获得积分10
刚刚
ttrtdong完成签到,获得积分10
刚刚
传奇3应助阿呸采纳,获得10
1秒前
自由人发布了新的文献求助10
1秒前
852应助wuran采纳,获得10
1秒前
孝顺的致远完成签到,获得积分10
2秒前
华仔应助俊逸的代曼采纳,获得10
2秒前
丘比特应助李晓彤采纳,获得10
2秒前
孙皓阳完成签到,获得积分20
3秒前
Ariel发布了新的文献求助10
3秒前
天天快乐应助yating采纳,获得30
4秒前
赵世璧完成签到,获得积分10
4秒前
时嗷发布了新的文献求助10
4秒前
xxaqs发布了新的文献求助10
4秒前
小二郎应助nature采纳,获得10
5秒前
小匹夫发布了新的文献求助10
5秒前
汉堡包应助茂利采纳,获得10
5秒前
6秒前
Gandyiii完成签到,获得积分10
6秒前
Swin完成签到,获得积分10
6秒前
李爱国应助邹泰然采纳,获得10
6秒前
生动的大侠完成签到,获得积分10
7秒前
7秒前
充电宝应助温柔发卡采纳,获得10
8秒前
liaolu完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
wcy完成签到,获得积分10
9秒前
9秒前
苹果熊猫完成签到,获得积分10
9秒前
10秒前
11秒前
张惠兰发布了新的文献求助10
11秒前
情怀应助Gandyiii采纳,获得10
11秒前
高兴璎完成签到,获得积分10
11秒前
飞柏发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302