Papers and patents are becoming less disruptive over time

引用 数据科学 比例(比率) 领域(数学) 技术变革 计算机科学 地理 数学 人工智能 地图学 图书馆学 纯数学
作者
Michael Park,Erin Leahey,Russell J. Funk
出处
期刊:Nature [Springer Nature]
卷期号:613 (7942): 138-144 被引量:416
标识
DOI:10.1038/s41586-022-05543-x
摘要

Theories of scientific and technological change view discovery and invention as endogenous processes1,2, wherein previous accumulated knowledge enables future progress by allowing researchers to, in Newton’s words, ‘stand on the shoulders of giants’3–7. Recent decades have witnessed exponential growth in the volume of new scientific and technological knowledge, thereby creating conditions that should be ripe for major advances8,9. Yet contrary to this view, studies suggest that progress is slowing in several major fields10,11. Here, we analyse these claims at scale across six decades, using data on 45 million papers and 3.9 million patents from six large-scale datasets, together with a new quantitative metric—the CD index12—that characterizes how papers and patents change networks of citations in science and technology. We find that papers and patents are increasingly less likely to break with the past in ways that push science and technology in new directions. This pattern holds universally across fields and is robust across multiple different citation- and text-based metrics1,13–17. Subsequently, we link this decline in disruptiveness to a narrowing in the use of previous knowledge, allowing us to reconcile the patterns we observe with the ‘shoulders of giants’ view. We find that the observed declines are unlikely to be driven by changes in the quality of published science, citation practices or field-specific factors. Overall, our results suggest that slowing rates of disruption may reflect a fundamental shift in the nature of science and technology. A decline in disruptive science and technology over time is reported, representing a substantive shift in science and technology, which is attributed in part to the reliance on a narrower set of existing knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到 ,获得积分10
刚刚
SciGPT应助伊酒采纳,获得10
1秒前
何糖发布了新的文献求助10
2秒前
ding应助SEV采纳,获得10
2秒前
田様应助csq采纳,获得10
2秒前
dafwfwaf发布了新的文献求助10
2秒前
2秒前
景别完成签到,获得积分10
3秒前
彭于晏应助zhappy采纳,获得20
3秒前
4秒前
xg发布了新的文献求助10
4秒前
5秒前
Tophet完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
FashionBoy应助落落采纳,获得10
7秒前
活力的青枫完成签到 ,获得积分10
7秒前
苏素肃发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
空禅yew发布了新的文献求助10
9秒前
汉堡包应助花开的声音1217采纳,获得10
9秒前
ying发布了新的文献求助10
9秒前
animenz完成签到,获得积分10
10秒前
tY发布了新的文献求助10
11秒前
OJL发布了新的文献求助10
11秒前
11秒前
11秒前
柒柒完成签到,获得积分10
11秒前
丘比特应助111采纳,获得10
12秒前
13秒前
13秒前
XShu完成签到,获得积分20
13秒前
xx完成签到 ,获得积分10
14秒前
羊知鱼完成签到,获得积分10
15秒前
公茂源发布了新的文献求助30
15秒前
搞怪不言发布了新的文献求助10
16秒前
DDDD完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808