计算机科学
稳健性(进化)
端到端原则
人工智能
神经影像学
图形
聚类分析
人工神经网络
功能磁共振成像
模式识别(心理学)
机器学习
理论计算机科学
心理学
精神科
生物化学
化学
神经科学
生物
基因
作者
Quan Mai,Ukash Nakarmi,Miaoqing Huang
标识
DOI:10.1109/bibm55620.2022.9994963
摘要
Graph Neural Networks (GNNs), a deep learning model for non-Euclidean data structures, have shown significant improvement in brain-related intelligent tasks (neuroimaging, brain clustering). A graph constructed from brain atlas is input of GNNs for various tasks. However, the choice of node connectivity (edges) receives little attention in current works, the performance thereby degrades when dealing with noisy dataset. In this paper, we propose an end-to-end framework to boost the performance robustness on noisy functional Magnetic Resonance Imaging (fMRI) dataset, using a Variational Graph Auto-Encoders (VGAE)-based edge predictor.
科研通智能强力驱动
Strongly Powered by AbleSci AI