A CNN-RNN unified framework for intrapartum cardiotocograph classification

胎儿 胎心率 计算机科学 医学 胎心 卷积神经网络 假阳性率 怀孕 人工智能 机器学习 产科 心率 内科学 血压 遗传学 生物
作者
Huanwen Liang,Lu Yu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107300-107300 被引量:9
标识
DOI:10.1016/j.cmpb.2022.107300
摘要

Prenatal fetal monitoring, which can monitor the growth and health of the fetus, is very vital for pregnant women before delivery. During pregnancy, it is crucial to judge whether the fetus is abnormal, which helps obstetricians carry out early intervention to avoid fetal hypoxia and even death. At present, clinical fetal monitoring widely used fetal heart rate monitoring equipment. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are important information to evaluate fetal health status.This paper is based on 1D-CNN (One Dimension Convolutional Neural Network) and GRU (Gate Recurrent Unit). We preprocess the obtained data and enhances them, to make the proportion of number of instances in different class in the training set is same.In model performance evaluation, standard evaluation indicators are used, such as accuracy, sensitivity, specificity, and ROC (receiver operating characteristic). Finally, the accuracy of our model in the test set is 95.15%, the sensitivity is 96.20%, and the specificity is 94.09%.In fetal heart rate monitoring, this paper proposes a 1D-CNN and bidirectional GRU hybrid models, and the fetal heart rate and uterine contraction signals given by monitoring are used as input feature to classify the fetal health status. The results show that our approach is effective in evaluating fetal health status and can assists obstetricians in clinical decision-making. And provide a baseline for the introduction of 1D-CNN and bidirectional GRU hybrid models into the evaluation of fetal health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tim完成签到,获得积分10
2秒前
天天快乐应助huijuan采纳,获得10
3秒前
4秒前
huang1499发布了新的文献求助10
4秒前
5秒前
Mars1998完成签到,获得积分10
6秒前
一木张发布了新的文献求助10
7秒前
7秒前
wanci应助那小子真帅采纳,获得10
7秒前
8秒前
含蓄的孤丝完成签到 ,获得积分10
8秒前
江流儿发布了新的文献求助10
9秒前
X1x1A0Q1完成签到,获得积分10
9秒前
9秒前
10秒前
yy完成签到,获得积分10
11秒前
sonokoH发布了新的文献求助10
11秒前
皮皮发布了新的文献求助10
12秒前
12秒前
抹茶玉兔完成签到,获得积分10
13秒前
13秒前
14秒前
背后飞柏发布了新的文献求助10
14秒前
樱桃小贩完成签到,获得积分10
14秒前
GZY发布了新的文献求助10
15秒前
犹豫的踏歌完成签到,获得积分10
16秒前
CipherSage应助周再乐采纳,获得10
17秒前
标致的寻雪完成签到,获得积分10
18秒前
19秒前
huijuan发布了新的文献求助10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
cocolu应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
Owen应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465938
求助须知:如何正确求助?哪些是违规求助? 3058897
关于积分的说明 9063789
捐赠科研通 2749294
什么是DOI,文献DOI怎么找? 1508454
科研通“疑难数据库(出版商)”最低求助积分说明 696922
邀请新用户注册赠送积分活动 696607