A CNN-RNN unified framework for intrapartum cardiotocograph classification

胎儿 胎心率 计算机科学 医学 胎心 卷积神经网络 假阳性率 怀孕 人工智能 机器学习 产科 心率 内科学 血压 遗传学 生物
作者
Huanwen Liang,Lu Yu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107300-107300 被引量:9
标识
DOI:10.1016/j.cmpb.2022.107300
摘要

Prenatal fetal monitoring, which can monitor the growth and health of the fetus, is very vital for pregnant women before delivery. During pregnancy, it is crucial to judge whether the fetus is abnormal, which helps obstetricians carry out early intervention to avoid fetal hypoxia and even death. At present, clinical fetal monitoring widely used fetal heart rate monitoring equipment. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are important information to evaluate fetal health status.This paper is based on 1D-CNN (One Dimension Convolutional Neural Network) and GRU (Gate Recurrent Unit). We preprocess the obtained data and enhances them, to make the proportion of number of instances in different class in the training set is same.In model performance evaluation, standard evaluation indicators are used, such as accuracy, sensitivity, specificity, and ROC (receiver operating characteristic). Finally, the accuracy of our model in the test set is 95.15%, the sensitivity is 96.20%, and the specificity is 94.09%.In fetal heart rate monitoring, this paper proposes a 1D-CNN and bidirectional GRU hybrid models, and the fetal heart rate and uterine contraction signals given by monitoring are used as input feature to classify the fetal health status. The results show that our approach is effective in evaluating fetal health status and can assists obstetricians in clinical decision-making. And provide a baseline for the introduction of 1D-CNN and bidirectional GRU hybrid models into the evaluation of fetal health status.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
浮游应助康轲采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
万能图书馆应助Zo采纳,获得30
2秒前
糖炒小白云完成签到,获得积分10
2秒前
郝天鑫完成签到,获得积分10
2秒前
加减乘除发布了新的文献求助10
2秒前
风中的溪流完成签到,获得积分10
3秒前
李春生完成签到,获得积分10
3秒前
加油少年完成签到,获得积分10
4秒前
4秒前
美少叔叔完成签到 ,获得积分10
4秒前
5秒前
yw完成签到 ,获得积分10
5秒前
5秒前
jzs完成签到 ,获得积分10
5秒前
cxy完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
巴达天使完成签到,获得积分10
8秒前
潇洒台灯完成签到,获得积分10
8秒前
Owen应助加油少年采纳,获得10
9秒前
蘑菇完成签到,获得积分10
10秒前
郝郝完成签到,获得积分10
10秒前
QQ完成签到,获得积分10
11秒前
糟糕的翅膀完成签到,获得积分10
11秒前
JJJ发布了新的文献求助30
11秒前
qiangxu完成签到,获得积分10
12秒前
12秒前
Cat4pig完成签到 ,获得积分10
12秒前
HH完成签到 ,获得积分10
13秒前
爆米花应助顺心的水云采纳,获得10
13秒前
叶子完成签到,获得积分10
14秒前
14秒前
星之完成签到,获得积分10
14秒前
诚心熊猫完成签到,获得积分10
16秒前
就是一种水稻的完成签到,获得积分10
17秒前
18秒前
YY完成签到 ,获得积分10
18秒前
yy完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131