Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BruceQ发布了新的文献求助10
1秒前
科研通AI6应助独特酬海采纳,获得10
2秒前
2秒前
2秒前
Badada完成签到,获得积分10
2秒前
Fqdgest完成签到,获得积分10
3秒前
合适苗条发布了新的文献求助10
3秒前
积极的音响完成签到,获得积分10
3秒前
wen_xxx发布了新的文献求助20
4秒前
5秒前
杨宇康发布了新的文献求助30
5秒前
5秒前
hahahahaha完成签到,获得积分10
6秒前
6秒前
科研通AI6应助Fuckacdemic采纳,获得30
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
mrbd发布了新的文献求助10
8秒前
H_完成签到 ,获得积分10
8秒前
8秒前
可爱的函函应助Su_Zehe采纳,获得10
9秒前
yydssss完成签到,获得积分10
9秒前
银月葱头完成签到,获得积分10
9秒前
小鱼儿发布了新的文献求助10
9秒前
狐尔莫发布了新的文献求助10
10秒前
walle发布了新的文献求助10
10秒前
10秒前
Edwyna完成签到,获得积分10
11秒前
bkagyin应助翁瑞婷采纳,获得10
11秒前
moxin发布了新的文献求助10
11秒前
搜集达人应助合适苗条采纳,获得10
12秒前
12秒前
daomeng1发布了新的文献求助10
12秒前
xsss完成签到,获得积分10
12秒前
传奇3应助自然傲柔采纳,获得10
13秒前
大个应助jingjingjing采纳,获得10
14秒前
孟123完成签到,获得积分20
14秒前
你好呀完成签到,获得积分10
15秒前
15秒前
大个应助Nora采纳,获得10
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445758
求助须知:如何正确求助?哪些是违规求助? 4554937
关于积分的说明 14249209
捐赠科研通 4477203
什么是DOI,文献DOI怎么找? 2453241
邀请新用户注册赠送积分活动 1443973
关于科研通互助平台的介绍 1419999