亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WAHHH完成签到,获得积分10
2秒前
18秒前
量子星尘发布了新的文献求助50
24秒前
nolan完成签到 ,获得积分10
46秒前
51秒前
范ER完成签到 ,获得积分10
52秒前
落叶完成签到,获得积分10
1分钟前
小zz完成签到 ,获得积分10
1分钟前
fx完成签到 ,获得积分10
2分钟前
勇敢的蝙蝠侠完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Min发布了新的文献求助10
2分钟前
2分钟前
平常的建辉完成签到,获得积分20
2分钟前
伏城完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
爱弥儿发布了新的文献求助10
3分钟前
英姑应助爱弥儿采纳,获得10
3分钟前
3分钟前
无畏发布了新的文献求助10
3分钟前
无畏完成签到,获得积分10
3分钟前
今后应助秋日思语采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
ckmen5发布了新的文献求助10
4分钟前
li发布了新的文献求助10
4分钟前
4分钟前
4分钟前
秋日思语发布了新的文献求助10
4分钟前
Hanzoe应助袁青寒采纳,获得10
4分钟前
英姑应助可个可可采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
CipherSage应助秋日思语采纳,获得10
5分钟前
5分钟前
可个可可发布了新的文献求助10
5分钟前
zhu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611223
求助须知:如何正确求助?哪些是违规求助? 4016803
关于积分的说明 12435729
捐赠科研通 3698610
什么是DOI,文献DOI怎么找? 2039580
邀请新用户注册赠送积分活动 1072396
科研通“疑难数据库(出版商)”最低求助积分说明 956056