Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 化学 生物化学 语言学 哲学 基因
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj发布了新的文献求助10
1秒前
aminai完成签到,获得积分20
1秒前
2秒前
刘一手完成签到,获得积分10
4秒前
4秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
5秒前
程琛发布了新的文献求助20
6秒前
杳霭流玉发布了新的文献求助10
6秒前
6秒前
刘一手发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
8秒前
9秒前
舒心明杰完成签到,获得积分10
9秒前
9秒前
科研通AI6应助阙女士采纳,获得10
11秒前
醉熏的伊完成签到,获得积分10
11秒前
AA18236931952发布了新的文献求助10
12秒前
上官若男应助郑板桥采纳,获得10
12秒前
AJY完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
方董发布了新的文献求助10
16秒前
lengchitu发布了新的文献求助10
18秒前
无花果应助哟嚛采纳,获得10
18秒前
斯沃特应助研友_Zb1rln采纳,获得10
19秒前
19秒前
无情的rr发布了新的文献求助10
20秒前
zgx关注了科研通微信公众号
21秒前
Phoo完成签到 ,获得积分10
21秒前
谢朝邦发布了新的文献求助30
23秒前
伟少发布了新的文献求助100
23秒前
GPTea举报耶咦求助涉嫌违规
23秒前
一只迅猛龙完成签到,获得积分10
24秒前
xiaoxiang完成签到,获得积分10
25秒前
JamesPei应助专注的水壶采纳,获得10
25秒前
三九发布了新的文献求助10
25秒前
25秒前
闫辰龙发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123