Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文凤灵发布了新的文献求助10
3秒前
小碗完成签到 ,获得积分10
5秒前
打打应助稻草人采纳,获得30
6秒前
鬼才之眼完成签到,获得积分10
6秒前
king完成签到,获得积分10
11秒前
orixero应助慈祥的绮兰采纳,获得10
13秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
13秒前
程破茧完成签到,获得积分10
15秒前
17秒前
20秒前
快乐小恬完成签到 ,获得积分10
20秒前
23秒前
25秒前
lll发布了新的文献求助10
27秒前
27秒前
27秒前
zzzz发布了新的文献求助10
28秒前
大模型应助白白白采纳,获得10
29秒前
31秒前
31秒前
32秒前
泥巴发布了新的文献求助10
33秒前
孔建梅完成签到 ,获得积分10
35秒前
sera完成签到 ,获得积分10
39秒前
老八完成签到,获得积分10
40秒前
蓝泡泡完成签到 ,获得积分10
42秒前
研友_VZG7GZ应助春天的粥采纳,获得50
44秒前
wanci应助圆心角采纳,获得10
49秒前
50秒前
19应助亚迪采纳,获得50
55秒前
wanci应助pryturk采纳,获得10
55秒前
泥巴完成签到,获得积分10
57秒前
这个硬盘完成签到 ,获得积分10
57秒前
有人应助阿尼亚采纳,获得10
58秒前
58秒前
cc2713206完成签到,获得积分0
59秒前
爱学习的小花生完成签到,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得20
1分钟前
不配.应助科研通管家采纳,获得20
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194