亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 化学 生物化学 语言学 哲学 基因
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
10秒前
搜集达人应助科研通管家采纳,获得10
41秒前
MchemG应助科研通管家采纳,获得10
41秒前
Huzhu应助科研通管家采纳,获得10
41秒前
MchemG应助科研通管家采纳,获得10
41秒前
46秒前
49秒前
1分钟前
1分钟前
结实的谷芹完成签到,获得积分10
1分钟前
王硕小傻狗完成签到,获得积分10
1分钟前
熊22完成签到,获得积分10
1分钟前
1分钟前
2分钟前
清秀尔竹完成签到 ,获得积分10
2分钟前
熊22发布了新的文献求助10
2分钟前
感谢发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分10
2分钟前
ll61发布了新的文献求助10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
毛毛完成签到,获得积分10
2分钟前
天天快乐应助左白易采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
朱育攀给朱育攀的求助进行了留言
2分钟前
3分钟前
左白易发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
左白易完成签到,获得积分10
3分钟前
xxxxx炒菜完成签到,获得积分10
3分钟前
平常的若雁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
归尘发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518798
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505