Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qq完成签到,获得积分10
刚刚
iris发布了新的文献求助10
1秒前
打打应助cc采纳,获得10
2秒前
2秒前
3秒前
4秒前
冰凉发布了新的文献求助10
5秒前
zsy发布了新的文献求助10
6秒前
6秒前
独特冰安发布了新的文献求助10
6秒前
9秒前
SSS水鱼发布了新的文献求助10
9秒前
12秒前
健忘的煎饼完成签到 ,获得积分10
12秒前
隐形曼青应助失眠无声采纳,获得10
13秒前
英俊的铭应助zsy采纳,获得10
14秒前
彩色一曲完成签到,获得积分10
15秒前
axiba完成签到,获得积分10
15秒前
咩了个咩完成签到,获得积分10
16秒前
白色花海完成签到,获得积分10
19秒前
23秒前
娟麻麻的小新完成签到,获得积分10
23秒前
咩了个咩发布了新的文献求助30
23秒前
汉堡包应助WD采纳,获得10
27秒前
科研通AI2S应助快乐小狗采纳,获得10
28秒前
无畏完成签到,获得积分10
28秒前
木子应助xiangjun采纳,获得50
29秒前
好想夏天完成签到,获得积分10
31秒前
33秒前
zhouxy发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
情怀应助Salt采纳,获得10
35秒前
Archy发布了新的文献求助10
37秒前
Orange应助sciN采纳,获得10
37秒前
李慧敏完成签到,获得积分20
38秒前
38秒前
Akim应助科研通管家采纳,获得10
41秒前
烟花应助科研通管家采纳,获得10
41秒前
wanci应助科研通管家采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305