亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 化学 生物化学 语言学 哲学 基因
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
江洋大盗发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
SimonShaw完成签到,获得积分10
15秒前
研友_ZbP41L完成签到 ,获得积分10
38秒前
m李完成签到 ,获得积分10
51秒前
1分钟前
南音发布了新的文献求助10
1分钟前
852应助hh采纳,获得30
1分钟前
1分钟前
1分钟前
hh发布了新的文献求助30
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
852应助hh采纳,获得30
2分钟前
2分钟前
2分钟前
hh发布了新的文献求助30
2分钟前
搜集达人应助秋来九月八采纳,获得10
2分钟前
2分钟前
2分钟前
Chocolat_Chaud完成签到,获得积分10
3分钟前
刘冬晴发布了新的文献求助10
3分钟前
又绿发布了新的文献求助10
3分钟前
zhang完成签到,获得积分10
3分钟前
非洲大象完成签到,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502909
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439760