清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
widesky777完成签到 ,获得积分0
23秒前
HughWang完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
42秒前
健壮惋清完成签到 ,获得积分10
42秒前
Yogita完成签到,获得积分0
59秒前
1分钟前
娟娟加油完成签到 ,获得积分10
1分钟前
堀川发布了新的文献求助10
1分钟前
飞虎完成签到,获得积分10
1分钟前
1分钟前
抚琴祛魅完成签到 ,获得积分10
2分钟前
lx840518完成签到 ,获得积分10
2分钟前
2分钟前
童严柯发布了新的文献求助10
2分钟前
zzwwill完成签到,获得积分10
2分钟前
3分钟前
DMA50发布了新的文献求助150
3分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
大可完成签到 ,获得积分10
4分钟前
DMA50完成签到 ,获得积分10
5分钟前
赵一完成签到 ,获得积分10
5分钟前
冉亦完成签到,获得积分10
5分钟前
5分钟前
阔达的秀发完成签到,获得积分10
5分钟前
xue完成签到 ,获得积分10
5分钟前
YZY完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
deswin完成签到,获得积分10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
科研通AI5应助Fairy采纳,获得10
7分钟前
orixero应助甜蜜海蓝采纳,获得10
7分钟前
7分钟前
xiaowangwang完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
上官若男应助科研通管家采纳,获得10
8分钟前
laohei94_6完成签到 ,获得积分10
8分钟前
完美世界应助WC采纳,获得10
8分钟前
童严柯发布了新的文献求助20
8分钟前
Sunny完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065732
求助须知:如何正确求助?哪些是违规求助? 4288250
关于积分的说明 13359778
捐赠科研通 4107092
什么是DOI,文献DOI怎么找? 2249000
邀请新用户注册赠送积分活动 1254518
关于科研通互助平台的介绍 1186360