Multi-scale Multi-task Distillation for Incremental 3D Medical Image Segmentation

计算机科学 人工智能 机器学习 稳健性(进化) 分割 遗忘 深度学习 基本事实 语言学 生物化学 基因 哲学 化学
作者
Mu Tian,Qinzhu Yang,Yi Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 369-384
标识
DOI:10.1007/978-3-031-25066-8_20
摘要

AbstractAutomatic medical image segmentation is the core component for many clinical applications. Substantial number of deep learning based methods have been proposed in past years, but deploying such methods in practice faces certain difficulties, such as the acquisition of massive annotated data for training and the high latency of model iteration. In contrast to the conventional cycle of “data collection, offline training, model update”, developing a system that continuously generates robust predictions will be critical. Recently, incremental learning was widely investigated for classification and semantic segmentation on 2D natural images. Existing work showed the effectiveness of data rehearsal and knowledge distillation in counteracting catastrophic forgetting. Inspired by these advances, we propose a multi-scale multi-task distillation framework for incremental learning with 3D medical images. Different from the task-incremental scenario in literature, our proposed strategy focuses on improving robustness against implicit data distribution shift. We introduce knowledge distillation as multi-task regularization to resolve prediction confusions. At each step, the network is instructed to learn towards both the new ground truth and the uncertainty weighted predictions from the previous model. Simultaneously, image features at multiple scales in the segmentation network could participate in a contrastive learning scheme, aiming at more discriminant representations that inherit the past knowledge effectively. Experiments showed that our method improved overall continual learning robustness under the extremely challenging scenario of “seeing each image once in a batch of one” without any pre-training. In addition, the proposed method could work on top of any network architectures and existing incremental learning strategies. We also showed further improvements by combining our method with data rehearsal using a small buffer.KeywordsMulti-scaleMulti-taskDistillationIncremental learning3D medical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
余姓懒发布了新的文献求助10
1秒前
乌拉拉完成签到,获得积分10
1秒前
2秒前
ylj发布了新的文献求助10
2秒前
太陽完成签到 ,获得积分10
2秒前
LS发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
CipherSage应助wangayting采纳,获得10
3秒前
义气绿柳发布了新的文献求助150
3秒前
刘建伟发布了新的文献求助10
3秒前
3秒前
safari完成签到 ,获得积分10
3秒前
4秒前
大力道罡完成签到,获得积分10
4秒前
李娜完成签到,获得积分10
4秒前
活力的泥猴桃完成签到 ,获得积分10
4秒前
Annini完成签到,获得积分10
4秒前
6秒前
豪厉害完成签到,获得积分10
7秒前
大陆完成签到,获得积分10
8秒前
震动的梦山完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
未雨完成签到 ,获得积分10
8秒前
Zhouzhou发布了新的文献求助10
9秒前
果蝇之母完成签到 ,获得积分10
9秒前
9秒前
9秒前
ruru完成签到,获得积分10
10秒前
10秒前
10秒前
啊哈发布了新的文献求助10
11秒前
shh发布了新的文献求助30
11秒前
脑洞疼应助芫华采纳,获得10
11秒前
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388481
求助须知:如何正确求助?哪些是违规求助? 4510609
关于积分的说明 14035848
捐赠科研通 4421354
什么是DOI,文献DOI怎么找? 2428772
邀请新用户注册赠送积分活动 1421347
关于科研通互助平台的介绍 1400559