Edge Device Detection of Tea Leaves with One Bud and Two Leaves Based on ShuffleNetv2-YOLOv5-Lite-E

修剪 计算机科学 实现(概率) GSM演进的增强数据速率 人工智能 边缘检测 光学(聚焦) 图层(电子) 计算机视觉 机器人 特征(语言学) 模式识别(心理学) 数学 园艺 图像处理 图像(数学) 材料科学 统计 光学 物理 哲学 复合材料 生物 语言学
作者
Shihao Zhang,Hekai Yang,Chunhua Yang,Wenxia Yuan,Xinghui Li,Xinghua Wang,Yinsong Zhang,Xiaobo Cai,Yu‐Bo Sheng,Xiujuan Deng,Wei Huang,Lei Li,Junjie He,Baijuan Wang
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (2): 577-577 被引量:29
标识
DOI:10.3390/agronomy13020577
摘要

In order to solve the problem of an accurate recognition of tea picking through tea picking robots, an edge device detection method is proposed in this paper based on ShuffleNetv2-YOLOv5-Lite-E for tea with one bud and two leaves. This replaces the original feature extraction network by removing the Focus layer and using the ShuffleNetv2 algorithm, followed by a channel pruning of YOLOv5 at the neck layer head, thus achieving the purpose of reducing the model size. The results show that the size of the improved generated weight file is 27% of that of the original YOLOv5 model, and the mAP value of ShuffleNetv2-YOLOv5-Lite-E is 97.43% and 94.52% on the pc and edge device respectively, which are 1.32% and 1.75% lower compared to that of the original YOLOv5 model. The detection speeds of ShuffleNetv2-YOLOv5-Lite-E, YOLOv5, YOLOv4, and YOLOv3 were 8.6 fps, 2.7 fps, 3.2 fps, and 3.4 fps respectively after importing the models into an edge device, and the improved YOLOv5 detection speed was 3.2 times faster than that of the original YOLOv5 model. Through the detection method, the size of the original YOLOv5 model is effectively reduced while essentially ensuring recognition accuracy. The detection speed is also significantly improved, which is conducive to the realization of intelligent and accurate picking for future tea gardens, laying a solid foundation for the realization of tea picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
littlewhite关注了科研通微信公众号
刚刚
刚刚
零点起步完成签到,获得积分10
刚刚
慕青应助大力的含卉采纳,获得10
刚刚
善良过客发布了新的文献求助10
1秒前
1秒前
1秒前
dildil发布了新的文献求助10
1秒前
1秒前
hu970发布了新的文献求助10
2秒前
2秒前
王思鲁发布了新的文献求助30
2秒前
七个小矮人完成签到,获得积分10
3秒前
Aria完成签到,获得积分10
3秒前
感性的安露应助结实雪卉采纳,获得20
4秒前
零点起步发布了新的文献求助10
5秒前
故意的傲玉应助Ll采纳,获得10
5秒前
斯文败类应助xiuxiu_27采纳,获得10
5秒前
胖子完成签到,获得积分10
5秒前
王巧巧完成签到,获得积分10
5秒前
tangsuyun发布了新的文献求助10
6秒前
祝顺遂发布了新的文献求助10
6秒前
Seven发布了新的文献求助10
6秒前
土拨鼠完成签到 ,获得积分10
7秒前
邢夏之发布了新的文献求助10
7秒前
漂亮芹菜完成签到,获得积分10
7秒前
ZXH完成签到,获得积分10
7秒前
Evelyn完成签到 ,获得积分10
7秒前
习习应助sb采纳,获得10
8秒前
8秒前
8秒前
斯文败类应助liu采纳,获得10
9秒前
9秒前
gy发布了新的文献求助10
9秒前
11秒前
pinging应助566采纳,获得10
11秒前
乾明少侠完成签到 ,获得积分10
12秒前
12秒前
开心重要完成签到,获得积分10
13秒前
云魂完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759