Few-shot learning for seismic facies segmentation via prototype learning

分割 地质学 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 地震学 古生物学 语言学 构造盆地 哲学
作者
Yunhe Zhao,Bianfang Chai,Liangxun Shuo,Zenghao Li,Heng Wu,Tianyi Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (3): IM41-IM49 被引量:1
标识
DOI:10.1190/geo2022-0281.1
摘要

The mapping of seismic facies from seismic data is considered a multiclass image semantic segmentation problem. Despite the signification progress made by the deep learning methods in seismic prospecting, the dense prediction problem of seismic facies requires large amounts of annotated seismic facies data, which often are unavailable. These valuable labels are only helpful in one model and field due to geologic heterogeneity. To overcome these challenges, we have developed a few-shot seismic facies segmentation model. Few-shot learning has been designed to learn to perform with very few labels and we design reconstructing masked traces as a pretext task for self-supervised learning to obtain a good feature extractor. By these, this model can use all seismic data from different fields, which is different from image data as the texture-based data. With two different seismic data in turn as a meta-training set and a meta-testing set, our model works well in one- and five-shot settings, which means only one label and five labels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助能干的吐司采纳,获得10
刚刚
1秒前
CipherSage应助123采纳,获得10
1秒前
1秒前
谦让之云发布了新的文献求助10
2秒前
嗯哼发布了新的文献求助10
2秒前
小蘑菇应助明亮飞双采纳,获得10
3秒前
why发布了新的文献求助10
3秒前
粥粥完成签到 ,获得积分10
3秒前
郭小宝发布了新的文献求助10
3秒前
4秒前
5秒前
白日梦完成签到,获得积分20
5秒前
5秒前
大模型应助张张张采纳,获得10
5秒前
ding应助亭亭1234采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
善学以致用应助苏利文采纳,获得30
9秒前
9秒前
9秒前
xmj完成签到,获得积分10
9秒前
10秒前
aaaaa发布了新的文献求助10
11秒前
123发布了新的文献求助10
13秒前
健忘傲柏完成签到,获得积分10
13秒前
顾矜应助mariawang采纳,获得10
14秒前
可爱的从寒完成签到,获得积分10
14秒前
hyx完成签到,获得积分10
14秒前
明亮飞双发布了新的文献求助10
15秒前
高大一一完成签到,获得积分10
15秒前
图南发布了新的文献求助10
15秒前
大模型应助WSGQT采纳,获得10
16秒前
香蕉觅云应助xxxllllll采纳,获得10
16秒前
YI应助小芭乐采纳,获得10
16秒前
勤奋柚子发布了新的文献求助10
16秒前
17秒前
方赫然完成签到,获得积分0
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021