作者
Yaning Zang,Xigui Lai,Conghui Li,Dongfang Ding,Ying Wang,Yi Zhu
摘要
Background and Object. There is a growing body of evidence highlighting the significant role of gut microbiota in various neurological and psychiatric disorders. We performed an evidence mapping to review the association between different microbiota and these disorders and assessed the strength of evidence for these associations. Methods. We searched PubMed, Cochrane Library, and Epistemonikos to identify systematic reviews and meta-analysis (SRs). We searched for neurological diseases and psychiatric disorders, including Alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism spectrum disorder (ASD), anorexia nervosa (AN), bipolar disorder (BD), eating disorder (ED), generalized anxiety disorder (GAD), major depressive disorder (MDD), multiple sclerosis (MS), obsessive compulsive disorder (OCD), Parkinson’s disease (PD), posttraumatic stress disorder (PTSD), spinal cord injury (SCI), schizophrenia, and stroke. We used A Measurement Tool to Assess Systematic Reviews (AMSTAR-2) to evaluate the quality of included SRs. We also created an evidence map showing the role of gut microbiota in neurological diseases and the certainty of the evidence. Results. In total, 42 studies were included in this evidence mapping. Most findings were obtained from observational studies. According to the AMSTAR-2 assessment, 21 SRs scored “critically low” in terms of methodological quality, 16 SR scored “low,” and 5 SR scored “moderate.” A total of 15 diseases have been investigated for the potential association between gut microbiome alpha diversity and disease, with the Shannon index and Simpson index being the most widely studied. A total of 12 diseases were investigated for potential link between beta diversity and disease. At the phylum level, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were more researched. At the genus level, Prevotella, Coprococcus, Parabacteroides, Phascolarctobacterium, Escherichia Shigella, Alistipes, Sutteralla, Veillonella, Odoribacter, Faecalibacterium, Bacteroides, Bifidobacterium, Dialister, and Blautia were more researched. Some diseases have been found to have specific flora changes, and some diseases have been found to have common intestinal microbiological changes. Conclusion. We found varied levels of evidence for the associations between gut microbiota and neurological diseases; some gut microbiota increased the risk of neurological diseases, whereas others showed evidence of benefit that gut microbiota might be promising therapeutic targets for such diseases.