A Highly Sensitive Wear Debris Sensor Based on Differential Detection

感应式传感器 信号(编程语言) 信号调节 噪音(视频) 声学 材料科学 干扰(通信) 状态监测 电磁感应 电磁线圈 探测理论 电子工程 频道(广播) 工程类 电气工程 计算机科学 功率(物理) 探测器 物理 人工智能 量子力学 程序设计语言 图像(数学)
作者
Zhaoxu Yang,Shengzhao Wang,Hongpeng Zhang,Chenyong Wang,Wei Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (15): 16746-16754 被引量:2
标识
DOI:10.1109/jsen.2023.3239884
摘要

Wear debris in the oil contains a wealth of information about the friction pairs of the mechanical equipment. By analyzing the size and type of wear debris through oil detection technology, condition monitoring and fault diagnosis of mechanical systems can be realized. This article presents an inductive sensor based on differential detection and its signal conditioning circuit, which can detect metal wear debris in the oil. The sensor adopts the structure of two induction coils embedded in one excitation coil. The differential signal is obtained by reverse connecting two induction coils with the same parameters, which can suppress the common-mode interference and eliminate the influence of ambient noise so that the sensor has extremely low noise. Through the designed signal conditioning circuit, the detection signal is phase-sensitive detected, and the information of wear debris is extracted by amplification and filtering. In this article, the sensing principle of the sensor is derived, the spacing between the two induction coils is optimized using the finite-element simulation, and the optimal excitation frequency, detection limit, and detection error of the sensor are investigated through experiments. The experiment results show that the sensor can detect 20- $\mu \text{m}$ iron particles and 130- $\mu \text{m}$ copper particles in a 2-mm flow channel, and the detection error of the sensor is less than 22%. The sensor has the advantages of simple structure and high sensitivity and can be applied to detect metal wear debris in hydraulic oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXL发布了新的文献求助10
1秒前
听蝉完成签到,获得积分10
1秒前
Wee完成签到 ,获得积分10
2秒前
轻松沛凝发布了新的文献求助10
2秒前
LIVE发布了新的文献求助200
2秒前
3秒前
93发布了新的文献求助30
4秒前
可爱的函函应助soong采纳,获得10
4秒前
酷炫翠桃应助奋斗的妙海采纳,获得10
4秒前
西红柿炒番茄应助一丁雨采纳,获得10
5秒前
严永桂发布了新的文献求助10
5秒前
6秒前
Yi发布了新的文献求助30
7秒前
7秒前
所所应助吱吱采纳,获得30
10秒前
无花果应助ZXL采纳,获得10
10秒前
初见发布了新的文献求助10
11秒前
11秒前
12秒前
希望天下0贩的0应助Randy采纳,获得10
13秒前
领导范儿应助妥妥酱采纳,获得10
13秒前
jessica发布了新的文献求助50
13秒前
钮枫完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
hyw完成签到,获得积分10
16秒前
warren完成签到,获得积分10
18秒前
HXU发布了新的文献求助10
18秒前
包容新蕾发布了新的文献求助10
18秒前
淡定小懒猪完成签到,获得积分10
19秒前
19秒前
香蕉觅云应助Cindy采纳,获得10
19秒前
19秒前
钮枫发布了新的文献求助30
19秒前
猫咪也疯狂应助栗子采纳,获得10
19秒前
warren发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053