Object detection of VisDrone by stronger feature extraction FasterRCNN

计算机科学 特征提取 人工智能 模式识别(心理学) 卷积神经网络 联营 语义特征 特征(语言学) 目标检测 聚类分析 对象(语法) 构造(python库) 像素 数据挖掘 计算机视觉 哲学 语言学 程序设计语言
作者
Xiangxiang Zhang,Chunyuan Wang,Jie Jin,Li Huang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (01) 被引量:5
标识
DOI:10.1117/1.jei.32.1.013018
摘要

Object detection and analysis in remote sensing images is a critical research subject for many businesses and agencies. At present, object detection based on convolutional neural network (CNN) in natural scenes has good performance. Due to the large number of small objects and similar characteristics between the objects in the VisDrone dataset, the current model cannot extract more small-scale features. Therefore, this paper proposes a stronger feature extraction FasterRCNN (SFE-FasterRCNN) that advances a feature extraction strengthening network to enhance the feature learning ability for different objects. Specifically, the pixel proposal network (PPN) is proposed by combining the low-resolution and strong semantic features with high-resolution and weak semantic features through a top-down approach and reusing these fusion blocks vertically to construct a comprehensive semantic feature map. Then hyperbolic pooling is proposed to minimize the loss of feature information during the activation mapping process. Finally, data clustering is used to adaptively generate better object proposals according to the characteristics of the dataset. Experimental results on the VisDrone dataset show that our method has excellent detection results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适梨愁发布了新的文献求助10
刚刚
汉堡包应助刻苦羽毛采纳,获得30
2秒前
浮游应助XL神放采纳,获得10
2秒前
科研通AI6应助he采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
酷波er应助小路采纳,获得10
4秒前
江楠发布了新的文献求助10
4秒前
超级Huan完成签到,获得积分10
4秒前
zhangzhaoxin完成签到,获得积分10
4秒前
tt驳回了cc应助
5秒前
酱酱完成签到,获得积分10
5秒前
5秒前
答案加载中完成签到 ,获得积分10
7秒前
雷家发布了新的文献求助10
7秒前
xn201120发布了新的文献求助10
8秒前
8秒前
9秒前
深情安青应助养生坤坤采纳,获得10
9秒前
汉堡包应助赵浩楠采纳,获得10
10秒前
11秒前
11秒前
缥缈橘子发布了新的文献求助10
11秒前
阳光谷完成签到,获得积分10
11秒前
美好的冰蓝完成签到 ,获得积分10
12秒前
lixiaorui发布了新的文献求助10
13秒前
科研通AI6应助江楠采纳,获得10
14秒前
酷波er应助雨雨爱薯条采纳,获得10
14秒前
852应助qq采纳,获得10
14秒前
15秒前
阳光谷发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
机灵千萍完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
领导范儿应助XL神放采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091