Projective Incomplete Multi-View Clustering

聚类分析 计算机科学 图形 数据挖掘 代表(政治) 共识聚类 人工智能 约束聚类 机器学习 理论计算机科学 相关聚类 树冠聚类算法 政治学 政治 法学
作者
Shijie Deng,Jie Wen,Chengliang Liu,Ke Yan,Gehui Xu,Yong Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10539-10551 被引量:59
标识
DOI:10.1109/tnnls.2023.3242473
摘要

Due to the rapid development of multimedia technology and sensor technology, multi-view clustering (MVC) has become a research hotspot in machine learning, data mining, and other fields and has been developed significantly in the past decades. Compared with single-view clustering, MVC improves clustering performance by exploiting complementary and consistent information among different views. Such methods are all based on the assumption of complete views, which means that all the views of all the samples exist. It limits the application of MVC, because there are always missing views in practical situations. In recent years, many methods have been proposed to solve the incomplete MVC (IMVC) problem and a kind of popular method is based on matrix factorization (MF). However, such methods generally cannot deal with new samples and do not take into account the imbalance of information between different views. To address these two issues, we propose a new IMVC method, in which a novel and simple graph regularized projective consensus representation learning model is formulated for incomplete multi-view data clustering task. Compared with the existing methods, our method not only can obtain a set of projections to handle new samples but also can explore information of multiple views in a balanced way by learning the consensus representation in a unified low-dimensional subspace. In addition, a graph constraint is imposed on the consensus representation to mine the structural information inside the data. Experimental results on four datasets show that our method successfully accomplishes the IMVC task and obtain the best clustering performance most of the time. Our implementation is available at https://github.com/Dshijie/PIMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助阿晖又叫阿龟采纳,获得10
1秒前
安静心情完成签到 ,获得积分10
1秒前
Smoiy完成签到 ,获得积分10
2秒前
冉蓝发布了新的文献求助10
2秒前
白夜完成签到 ,获得积分10
3秒前
3秒前
斯人如机发布了新的文献求助10
4秒前
4秒前
脑洞疼应助小绵羊采纳,获得10
4秒前
可夫司机完成签到 ,获得积分10
4秒前
Jqq完成签到,获得积分20
5秒前
善学以致用应助孟严青采纳,获得10
8秒前
9秒前
9秒前
赘婿应助rym0404采纳,获得10
10秒前
Mia233发布了新的文献求助10
10秒前
大方的书雁完成签到 ,获得积分10
10秒前
zhenzheng完成签到 ,获得积分0
11秒前
LELIN完成签到,获得积分10
12秒前
13秒前
殷勤的紫槐发布了新的文献求助200
13秒前
花开富贵完成签到 ,获得积分10
13秒前
打打应助zhuxf采纳,获得10
13秒前
小二郎应助糊图酱采纳,获得10
14秒前
15秒前
15秒前
16秒前
夜猫子完成签到,获得积分10
17秒前
淡然紫寒发布了新的文献求助20
17秒前
hs完成签到,获得积分10
17秒前
沈惠映完成签到 ,获得积分10
18秒前
18秒前
在水一方应助周佳炜采纳,获得10
20秒前
陶醉觅夏发布了新的文献求助10
21秒前
向南发布了新的文献求助10
22秒前
孤独半兰发布了新的文献求助10
22秒前
单薄雁玉发布了新的文献求助20
22秒前
斯人如机发布了新的文献求助10
27秒前
风中淇完成签到,获得积分10
27秒前
妖妖灵完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305537
求助须知:如何正确求助?哪些是违规求助? 4451621
关于积分的说明 13852618
捐赠科研通 4339073
什么是DOI,文献DOI怎么找? 2382334
邀请新用户注册赠送积分活动 1377393
关于科研通互助平台的介绍 1344925