Projective Incomplete Multi-View Clustering

聚类分析 计算机科学 图形 数据挖掘 代表(政治) 共识聚类 人工智能 约束聚类 机器学习 理论计算机科学 相关聚类 树冠聚类算法 政治 政治学 法学
作者
Shijie Deng,Jie Wen,Chengliang Liu,Ke Yan,Gehui Xu,Yong Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10539-10551 被引量:59
标识
DOI:10.1109/tnnls.2023.3242473
摘要

Due to the rapid development of multimedia technology and sensor technology, multi-view clustering (MVC) has become a research hotspot in machine learning, data mining, and other fields and has been developed significantly in the past decades. Compared with single-view clustering, MVC improves clustering performance by exploiting complementary and consistent information among different views. Such methods are all based on the assumption of complete views, which means that all the views of all the samples exist. It limits the application of MVC, because there are always missing views in practical situations. In recent years, many methods have been proposed to solve the incomplete MVC (IMVC) problem and a kind of popular method is based on matrix factorization (MF). However, such methods generally cannot deal with new samples and do not take into account the imbalance of information between different views. To address these two issues, we propose a new IMVC method, in which a novel and simple graph regularized projective consensus representation learning model is formulated for incomplete multi-view data clustering task. Compared with the existing methods, our method not only can obtain a set of projections to handle new samples but also can explore information of multiple views in a balanced way by learning the consensus representation in a unified low-dimensional subspace. In addition, a graph constraint is imposed on the consensus representation to mine the structural information inside the data. Experimental results on four datasets show that our method successfully accomplishes the IMVC task and obtain the best clustering performance most of the time. Our implementation is available at https://github.com/Dshijie/PIMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老八完成签到,获得积分10
刚刚
1秒前
高兴绿柳完成签到 ,获得积分10
1秒前
传奇3应助快乐冰激凌采纳,获得10
1秒前
满天星发布了新的文献求助10
1秒前
悲凉的翼完成签到 ,获得积分10
2秒前
2秒前
李院完成签到,获得积分10
3秒前
赘婿应助zhao采纳,获得10
3秒前
缥缈的绿兰完成签到,获得积分10
4秒前
4秒前
脑洞疼应助甜美的安双采纳,获得20
4秒前
852应助范佳宁采纳,获得10
5秒前
6秒前
6秒前
DI发布了新的文献求助30
6秒前
诸语薇发布了新的文献求助10
6秒前
6秒前
GLN完成签到,获得积分10
7秒前
Leoniko发布了新的文献求助10
7秒前
7秒前
8秒前
11发布了新的文献求助10
9秒前
SciGPT应助坚定的迎波采纳,获得10
9秒前
baiyang99发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
MHM完成签到,获得积分10
10秒前
真实的亦竹完成签到,获得积分20
10秒前
11秒前
打打应助擅长i采纳,获得10
11秒前
11秒前
wanci应助啊啊啊啊采纳,获得10
11秒前
11秒前
SYLH应助Amberstone1采纳,获得10
12秒前
BrooklynFy发布了新的文献求助10
12秒前
SciGPT应助super采纳,获得10
12秒前
12秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271