亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Projective Incomplete Multi-View Clustering

聚类分析 计算机科学 图形 数据挖掘 代表(政治) 共识聚类 人工智能 约束聚类 机器学习 理论计算机科学 相关聚类 树冠聚类算法 政治学 政治 法学
作者
Shijie Deng,Jie Wen,Chengliang Liu,Ke Yan,Gehui Xu,Yong Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10539-10551 被引量:94
标识
DOI:10.1109/tnnls.2023.3242473
摘要

Due to the rapid development of multimedia technology and sensor technology, multi-view clustering (MVC) has become a research hotspot in machine learning, data mining, and other fields and has been developed significantly in the past decades. Compared with single-view clustering, MVC improves clustering performance by exploiting complementary and consistent information among different views. Such methods are all based on the assumption of complete views, which means that all the views of all the samples exist. It limits the application of MVC, because there are always missing views in practical situations. In recent years, many methods have been proposed to solve the incomplete MVC (IMVC) problem and a kind of popular method is based on matrix factorization (MF). However, such methods generally cannot deal with new samples and do not take into account the imbalance of information between different views. To address these two issues, we propose a new IMVC method, in which a novel and simple graph regularized projective consensus representation learning model is formulated for incomplete multi-view data clustering task. Compared with the existing methods, our method not only can obtain a set of projections to handle new samples but also can explore information of multiple views in a balanced way by learning the consensus representation in a unified low-dimensional subspace. In addition, a graph constraint is imposed on the consensus representation to mine the structural information inside the data. Experimental results on four datasets show that our method successfully accomplishes the IMVC task and obtain the best clustering performance most of the time. Our implementation is available at https://github.com/Dshijie/PIMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Xixicccccccc发布了新的文献求助10
5秒前
17秒前
畅快甜瓜发布了新的文献求助10
23秒前
zjh发布了新的文献求助10
33秒前
华仔应助畅快甜瓜采纳,获得10
38秒前
Xixicccccccc发布了新的文献求助10
42秒前
44秒前
44秒前
eeevaxxx完成签到 ,获得积分10
47秒前
zjh完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
50秒前
科研通AI6.1应助内向的绿采纳,获得10
54秒前
1分钟前
1分钟前
IIII发布了新的文献求助10
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Xixicccccccc采纳,获得10
1分钟前
2分钟前
Xixicccccccc发布了新的文献求助10
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
2分钟前
Xixicccccccc发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
汉堡包应助畅快甜瓜采纳,获得10
3分钟前
SciGPT应助jy采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
jy发布了新的文献求助10
3分钟前
疯狂的绿蝶完成签到 ,获得积分10
3分钟前
4分钟前
Xixicccccccc发布了新的文献求助10
4分钟前
jy完成签到,获得积分10
4分钟前
科研通AI6.1应助bear101777采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732139
求助须知:如何正确求助?哪些是违规求助? 5336882
关于积分的说明 15322005
捐赠科研通 4877849
什么是DOI,文献DOI怎么找? 2620672
邀请新用户注册赠送积分活动 1569937
关于科研通互助平台的介绍 1526507