Projective Incomplete Multi-View Clustering

聚类分析 计算机科学 图形 数据挖掘 代表(政治) 共识聚类 人工智能 约束聚类 机器学习 理论计算机科学 相关聚类 树冠聚类算法 政治 政治学 法学
作者
Shijie Deng,Jie Wen,Chengliang Liu,Ke Yan,Gehui Xu,Yong Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10539-10551 被引量:34
标识
DOI:10.1109/tnnls.2023.3242473
摘要

Due to the rapid development of multimedia technology and sensor technology, multi-view clustering (MVC) has become a research hotspot in machine learning, data mining, and other fields and has been developed significantly in the past decades. Compared with single-view clustering, MVC improves clustering performance by exploiting complementary and consistent information among different views. Such methods are all based on the assumption of complete views, which means that all the views of all the samples exist. It limits the application of MVC, because there are always missing views in practical situations. In recent years, many methods have been proposed to solve the incomplete MVC (IMVC) problem and a kind of popular method is based on matrix factorization (MF). However, such methods generally cannot deal with new samples and do not take into account the imbalance of information between different views. To address these two issues, we propose a new IMVC method, in which a novel and simple graph regularized projective consensus representation learning model is formulated for incomplete multi-view data clustering task. Compared with the existing methods, our method not only can obtain a set of projections to handle new samples but also can explore information of multiple views in a balanced way by learning the consensus representation in a unified low-dimensional subspace. In addition, a graph constraint is imposed on the consensus representation to mine the structural information inside the data. Experimental results on four datasets show that our method successfully accomplishes the IMVC task and obtain the best clustering performance most of the time. Our implementation is available at https://github.com/Dshijie/PIMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spoon1026发布了新的文献求助10
1秒前
1秒前
宇文青寒完成签到,获得积分10
2秒前
香蕉觅云应助小乌龟采纳,获得10
2秒前
我下载不了论文啊完成签到,获得积分10
3秒前
靓丽采枫发布了新的文献求助10
3秒前
领导范儿应助舒服的荆采纳,获得10
3秒前
我是老大应助琥斛采纳,获得30
4秒前
4秒前
Miller给daq的求助进行了留言
4秒前
Mr_X发布了新的文献求助10
4秒前
晨风发布了新的文献求助10
5秒前
daifei发布了新的文献求助10
6秒前
如意伟诚发布了新的文献求助10
6秒前
彭于彦祖给风中清炎的求助进行了留言
6秒前
6秒前
科研通AI2S应助Coldpal采纳,获得10
7秒前
张靖完成签到,获得积分10
7秒前
8秒前
8秒前
MJ完成签到,获得积分10
8秒前
spoon1026完成签到,获得积分10
9秒前
9秒前
abaaba完成签到,获得积分10
10秒前
大方向真完成签到,获得积分10
11秒前
七十七asdmn完成签到,获得积分10
11秒前
年轻小甜瓜完成签到 ,获得积分10
11秒前
yujianjin完成签到,获得积分10
11秒前
weihe完成签到,获得积分10
11秒前
Mr_X完成签到,获得积分10
12秒前
xiaodingdangla完成签到,获得积分10
12秒前
田様应助人类繁殖学采纳,获得10
12秒前
苯环完成签到,获得积分10
13秒前
饱满的凡儿完成签到,获得积分20
13秒前
Res_M完成签到 ,获得积分10
14秒前
zhangwei应助姜姜采纳,获得10
14秒前
14秒前
不吃香菜完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587