Projective Incomplete Multi-View Clustering

聚类分析 计算机科学 图形 数据挖掘 代表(政治) 共识聚类 人工智能 约束聚类 机器学习 理论计算机科学 相关聚类 树冠聚类算法 政治学 政治 法学
作者
Shijie Deng,Jie Wen,Chengliang Liu,Ke Yan,Gehui Xu,Yong Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10539-10551 被引量:94
标识
DOI:10.1109/tnnls.2023.3242473
摘要

Due to the rapid development of multimedia technology and sensor technology, multi-view clustering (MVC) has become a research hotspot in machine learning, data mining, and other fields and has been developed significantly in the past decades. Compared with single-view clustering, MVC improves clustering performance by exploiting complementary and consistent information among different views. Such methods are all based on the assumption of complete views, which means that all the views of all the samples exist. It limits the application of MVC, because there are always missing views in practical situations. In recent years, many methods have been proposed to solve the incomplete MVC (IMVC) problem and a kind of popular method is based on matrix factorization (MF). However, such methods generally cannot deal with new samples and do not take into account the imbalance of information between different views. To address these two issues, we propose a new IMVC method, in which a novel and simple graph regularized projective consensus representation learning model is formulated for incomplete multi-view data clustering task. Compared with the existing methods, our method not only can obtain a set of projections to handle new samples but also can explore information of multiple views in a balanced way by learning the consensus representation in a unified low-dimensional subspace. In addition, a graph constraint is imposed on the consensus representation to mine the structural information inside the data. Experimental results on four datasets show that our method successfully accomplishes the IMVC task and obtain the best clustering performance most of the time. Our implementation is available at https://github.com/Dshijie/PIMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AN发布了新的文献求助30
2秒前
3秒前
珏珏_不是玉玉完成签到 ,获得积分10
4秒前
5秒前
柳大楚发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
zgrmws完成签到,获得积分0
9秒前
11秒前
马成双发布了新的文献求助10
12秒前
BSFXZ完成签到,获得积分10
12秒前
谭续燊发布了新的文献求助10
13秒前
Colleen完成签到,获得积分10
14秒前
save完成签到,获得积分10
15秒前
姜勇完成签到,获得积分10
15秒前
16秒前
饱满绮波完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
YeeLeeLee完成签到,获得积分10
18秒前
谭续燊完成签到,获得积分10
18秒前
马上动起来完成签到,获得积分0
18秒前
19秒前
hah完成签到,获得积分10
20秒前
先锋老刘001完成签到 ,获得积分20
20秒前
量子星尘发布了新的文献求助10
22秒前
Hua发布了新的文献求助10
22秒前
23秒前
小蓝发布了新的文献求助10
26秒前
26秒前
GWT发布了新的文献求助10
27秒前
怡然白竹完成签到 ,获得积分10
28秒前
Gloria的保镖完成签到 ,获得积分10
29秒前
wjw发布了新的文献求助10
29秒前
fuyg完成签到,获得积分10
29秒前
我睡觉的时候不困完成签到 ,获得积分10
29秒前
冷酷夏真完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
qin完成签到,获得积分10
33秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900