Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants
生物固体
流出物
废水
化学
环境化学
污水处理
水溶液
环境科学
环境工程
有机化学
作者
Charles E. Schaefer,Jennifer Hooper,Laurel E. Strom,Ibrahim Abusallout,Eric Dickenson,Kyle A. Thompson,Gayathri Ram Mohan,Dina M. Drennan,Ke Wu,Jennifer L. Guelfo
出处
期刊:Water Research [Elsevier] 日期:2023-02-10卷期号:233: 119724-119724被引量:34
Both quantifiable and semi-quantifiable poly- and perfluoroalkyl substances (PFAS) were evaluated in the influent, effluent, and biosolids of 38 wastewater treatment plants. PFAS were detected in all streams at all facilities. For the means of the sums of detected, quantifiable PFAS concentrations were 98 ± 28 ng/L, 80 ± 24 ng/L, and 160,000 ± 46,000 ng/kg (dry weight basis) in the influent, effluent, and biosolids (respectively). In the aqueous influent and effluent streams this quantifiable PFAS mass was typically associated with perfluoroalkyl acids (PFAAs). In contrast, quantifiable PFAS in the biosolids were primarily polyfluoroalkyl substances that potentially serve as precursors to the more recalcitrant PFAAs. Results of the total oxidizable precursor (TOP) assay on select influent and effluent samples showed that semi-quantified (or, unidentified) precursors accounted for a substantial portion (21 to 88%) of the fluorine mass compared to that associated with quantified PFAS, and that this fluorine precursor mass was not appreciably transformed to perfluoroalkyl acids within the WWTPs, as influent and effluent precursor concentrations via the TOP assay were statistically identical. Evaluation of semi-quantified PFAS, consistent with results of the TOP assay, showed the presence of several classes of precursors in the influent, effluent, and biosolids; perfluorophosphonic acids (PFPAs) and fluorotelomer phosphate diesters (di-PAPs) occurred in 100 and 92% of biosolid samples, respectively. Analysis of mass flows showed that, for both quantified (on a fluorine mass basis) and semi-quantified PFAS, the majority of PFAS exited WWTPs through the aqueous effluent compared to the biosolids stream. Overall, these results highlight the importance of semi-quantified PFAS precursors in WWTPs, and the need to further understand the impacts of their ultimate fate in the environment.