重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Prevalence of bovine coronavirus in cattle in China: A systematic review and meta-analysis

牛冠状病毒 腹泻 兽医学 中国 流行 荟萃分析 痢疾 环境卫生 生物 传统医学 医学 疾病 2019年冠状病毒病(COVID-19) 地理 微生物学 人口 内科学 传染病(医学专业) 考古
作者
Hong-Li Geng,Xiang-Zhu Meng,Wei-Lan Yan,Xiaoman Li,Jing Jiang,Hong‐Bo Ni,Wenhua Liu
出处
期刊:Microbial Pathogenesis [Elsevier]
卷期号:176: 106009-106009 被引量:21
标识
DOI:10.1016/j.micpath.2023.106009
摘要

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力的盼旋完成签到 ,获得积分10
1秒前
贤惠的芫完成签到,获得积分10
1秒前
共享精神应助碧蓝的往事采纳,获得10
1秒前
2秒前
wwwwwzzzzz发布了新的文献求助10
2秒前
王红鑫完成签到,获得积分10
2秒前
2秒前
爱因斯敏完成签到 ,获得积分10
3秒前
3秒前
3秒前
physic发布了新的文献求助10
3秒前
Jasper应助zhouzhou采纳,获得40
3秒前
3秒前
3秒前
key发布了新的文献求助10
4秒前
我的小羊发布了新的文献求助10
4秒前
浮游应助ly普鲁卡因采纳,获得10
4秒前
快冲冲冲完成签到 ,获得积分10
5秒前
jackie发布了新的文献求助20
6秒前
aaxs发布了新的文献求助10
6秒前
橙子橙子橙子完成签到,获得积分10
6秒前
浮游应助体贴的小天鹅采纳,获得10
6秒前
放飞的羊驼完成签到,获得积分10
6秒前
wzzznh发布了新的文献求助10
6秒前
jason发布了新的文献求助10
6秒前
淇淇发布了新的文献求助10
6秒前
yu发布了新的文献求助10
7秒前
好运6连发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
忧心的翎发布了新的文献求助10
8秒前
小鱼鱼发布了新的文献求助10
8秒前
浮游应助xuerui采纳,获得10
9秒前
9秒前
山海关外完成签到,获得积分10
9秒前
9秒前
newman发布了新的文献求助10
9秒前
沉默的不言完成签到 ,获得积分10
10秒前
123l发布了新的文献求助10
10秒前
11秒前
Hello应助Ammon采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516