Prevalence of bovine coronavirus in cattle in China: A systematic review and meta-analysis

牛冠状病毒 腹泻 兽医学 中国 流行 荟萃分析 痢疾 环境卫生 生物 传统医学 医学 疾病 2019年冠状病毒病(COVID-19) 地理 微生物学 人口 内科学 传染病(医学专业) 考古
作者
Hong-Li Geng,Xiang-Zhu Meng,Wei-Lan Yan,Xiao-Man Li,Jing Jiang,Hong‐Bo Ni,Wenhua Liu
出处
期刊:Microbial Pathogenesis [Elsevier]
卷期号:176: 106009-106009 被引量:9
标识
DOI:10.1016/j.micpath.2023.106009
摘要

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
6秒前
脑洞疼应助阳阳采纳,获得10
9秒前
专注秋尽发布了新的文献求助10
10秒前
12秒前
默默的棒棒糖完成签到 ,获得积分10
14秒前
14秒前
SONG关注了科研通微信公众号
14秒前
15秒前
ding应助呆头采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
axin应助科研通管家采纳,获得10
15秒前
terence应助科研通管家采纳,获得30
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
852应助科研通管家采纳,获得10
15秒前
hh应助科研通管家采纳,获得10
15秒前
sun发布了新的文献求助10
16秒前
16秒前
zhu完成签到,获得积分10
16秒前
酷波er应助缚大哥采纳,获得10
17秒前
李健应助明理雨筠采纳,获得10
17秒前
wang发布了新的文献求助10
19秒前
木头人给step_stone的求助进行了留言
19秒前
魏伯安完成签到,获得积分10
20秒前
朴素尔岚发布了新的文献求助10
21秒前
科研通AI5应助nextconnie采纳,获得10
21秒前
务实的犀牛完成签到,获得积分10
22秒前
22秒前
Blue_Pig发布了新的文献求助10
22秒前
23秒前
科研通AI2S应助橙子fy16_采纳,获得10
24秒前
LGJ完成签到,获得积分10
24秒前
wang完成签到,获得积分10
26秒前
27秒前
28秒前
脑洞疼应助Blue_Pig采纳,获得10
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849