材料科学
微电子
光致聚合物
3D打印
光子学
激光器
制作
纳米光子学
聚合物
纳米技术
光电子学
光学
聚合
复合材料
物理
医学
替代医学
病理
作者
Shaofeng Liu,Zheng‐Wei Hou,Linhan Lin,Zhengcao Li,Hong‐Bo Sun
标识
DOI:10.1002/adfm.202211280
摘要
Abstract 3D laser nanoprinting represents a revolutionary manufacturing approach as it allows maskless fabrication of 3D nanostructures at a resolution beyond the optical diffraction limit. Specifically, it endows the printed structures novel physical, chemical, or mechanical properties not observed at macroscopic scale. However, 3D laser nanoprinting typically relies on the photopolymerization process, indicating its limitation on the printable materials and functionalities. The capability to print diverse functional materials beyond polymer will enable a lot of new device applications in nanophotonics, microelectronics, and so on. One of the strategies is to use the 3D‐printed polymer structures as skeletons for functional material deposition, while another is to mix the functional components with the photocurable molecules and print the nanocomposites. More recently, several laser nanoprinting techniques beyond photopolymerization are also developed. In this review, the cutting‐edge technical innovation is summarized and a couple of examples are highlighted showing exciting applications of the printed structures in magnetic microrobots, photonics, and optoelectronics. Finally, the vision for existing challenges and future development in this field is shared.
科研通智能强力驱动
Strongly Powered by AbleSci AI