Pore Permeability Model Based on Fractal Geometry Theory and Effective Stress

分形维数 磁导率 多孔性 材料科学 分形 煤层气 多孔介质 岩土工程 机械 几何学 煤矿开采 复合材料 地质学 数学 化学 数学分析 生物化学 物理 有机化学
作者
Zhaolong Ge,Hui Zhang,Zhe Zhu,Yudong Hou,Maolin Ye,Chengtian Li
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASME International]
卷期号:145 (8) 被引量:1
标识
DOI:10.1115/1.4056890
摘要

Abstract A reasonable coal seam permeability model should be established to accurately estimate the extraction effectiveness of coalbed methane (CBM). Existing permeability models typically ignore the influence of pore structure parameters on the permeability, leading to an overestimation of the measured permeability, and consequently, the CBM production cannot be effectively predicted. This paper presents a novel permeability model based on discrete pore structures at the micro–nano scale. The model considers the interaction between the pore fractal geometry parameters, coal deformation, and CBM transport inside these pores. The contributions of key pore geometry parameters, including the maximum pore diameter, minimum pore diameter, porosity, and fractal dimensions, to the initial permeability were investigated. A numerical analysis showed that the influence of fractal dimension on the permeability is finally reflected in the influence of pore structure parameters. The initial permeability is exponential to the minimum pore diameter and proportional to the maximum pore diameter and porosity. In addition, the macroscopic permeability of the coal is positively correlated with the maximum pore diameter, minimum pore diameter, and porosity, with the minimum pore diameter having the most significant influence on the permeability evolution process. This research provides a theoretical foundation for revealing the gas flow mechanism within coal seams and enhancing the extraction effectiveness of CBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
pl加油发布了新的文献求助10
1秒前
1秒前
格兰德法泽尔完成签到,获得积分10
2秒前
2秒前
LAN完成签到,获得积分10
2秒前
HH发布了新的文献求助20
2秒前
3秒前
燕武发布了新的文献求助10
4秒前
英姑应助简单的卿采纳,获得10
4秒前
5秒前
请问哈完成签到 ,获得积分10
5秒前
爆米花应助大兵哥采纳,获得10
5秒前
小马甲应助飞跃采纳,获得10
6秒前
万能图书馆应助菲菲采纳,获得10
6秒前
甜甜向南完成签到,获得积分10
6秒前
陶醉难胜完成签到,获得积分10
7秒前
ok应助Liuruijia采纳,获得10
7秒前
wangckyt发布了新的文献求助10
8秒前
8秒前
一毛半完成签到,获得积分20
8秒前
8秒前
黄丽媛发布了新的文献求助10
8秒前
apchong完成签到,获得积分10
9秒前
9秒前
9秒前
青雾雨应助Hoshi采纳,获得10
10秒前
英姑应助儒雅魂幽采纳,获得10
10秒前
10秒前
10秒前
李健春完成签到 ,获得积分0
11秒前
轻松凝竹发布了新的文献求助10
11秒前
I2day完成签到,获得积分10
12秒前
12秒前
qingmoheng应助hahhhhhh2采纳,获得10
12秒前
12秒前
圈圈发布了新的文献求助10
12秒前
领导范儿应助付榆峰采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473178
求助须知:如何正确求助?哪些是违规求助? 4575418
关于积分的说明 14352529
捐赠科研通 4502905
什么是DOI,文献DOI怎么找? 2467377
邀请新用户注册赠送积分活动 1455298
关于科研通互助平台的介绍 1429322