Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy

计算机科学 人工智能 卷积神经网络 质心 深度学习 模式识别(心理学) 计算机视觉
作者
Elia Lombardo,Moritz Rabe,Yuqing Xiong,Lukas Nierer,Davide Cusumano,Lorenzo Placidi,Luca Boldrini,Stefanie Corradini,Maximilian Niyazi,M. J. Reiner,Claus Belka,Christopher Kurz,Marco Riboldi,Guillaume Landry
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:182: 109555-109555 被引量:18
标识
DOI:10.1016/j.radonc.2023.109555
摘要

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. Materials and methods Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. Results The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. Conclusion LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherlly完成签到,获得积分20
1秒前
1秒前
重要忆丹关注了科研通微信公众号
1秒前
Dogged完成签到 ,获得积分10
1秒前
june完成签到,获得积分10
3秒前
4秒前
roy发布了新的文献求助10
4秒前
yy完成签到 ,获得积分10
5秒前
一投必中完成签到,获得积分10
5秒前
Liuu完成签到,获得积分10
5秒前
曲奇不甜完成签到 ,获得积分10
6秒前
微笑的怀寒完成签到,获得积分10
6秒前
6秒前
6秒前
无花果应助胡图图采纳,获得30
6秒前
7秒前
7秒前
扶瑶可接完成签到 ,获得积分10
8秒前
爆米花应助RYY采纳,获得10
9秒前
不如吃茶去完成签到,获得积分10
9秒前
小马甲应助寒冷乐驹采纳,获得10
10秒前
无欲无求傻傻完成签到,获得积分10
10秒前
小乌龟发布了新的文献求助10
10秒前
10秒前
自行车v完成签到,获得积分10
10秒前
九日完成签到,获得积分10
10秒前
帅气之槐发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
瑞_发布了新的文献求助10
13秒前
13秒前
勤恳安南发布了新的文献求助50
13秒前
14秒前
大方雪枫发布了新的文献求助10
14秒前
make217发布了新的文献求助10
14秒前
wl完成签到,获得积分10
14秒前
15秒前
香蕉觅云应助dragonfly0118采纳,获得10
15秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122411
求助须知:如何正确求助?哪些是违规求助? 2772885
关于积分的说明 7714973
捐赠科研通 2428396
什么是DOI,文献DOI怎么找? 1289747
科研通“疑难数据库(出版商)”最低求助积分说明 621504
版权声明 600183