Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy

计算机科学 人工智能 卷积神经网络 质心 深度学习 模式识别(心理学) 计算机视觉
作者
Elia Lombardo,Moritz Rabe,Yuqing Xiong,Lukas Nierer,Davide Cusumano,Lorenzo Placidi,Luca Boldrini,Stefanie Corradini,Maximilian Niyazi,Michael Reiner,Claus Belka,Christopher Kurz,Marco Riboldi,Guillaume Landry
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:182: 109555-109555 被引量:23
标识
DOI:10.1016/j.radonc.2023.109555
摘要

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. Materials and methods Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. Results The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. Conclusion LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到 ,获得积分10
刚刚
刚刚
老谢发布了新的文献求助10
1秒前
check003完成签到,获得积分10
1秒前
fortune完成签到,获得积分10
2秒前
彳亍完成签到,获得积分10
4秒前
5秒前
7秒前
Lin完成签到,获得积分10
8秒前
8秒前
斯文败类应助乐观鑫鹏采纳,获得10
10秒前
浮游应助LHP采纳,获得10
11秒前
Lulul发布了新的文献求助10
12秒前
bai完成签到,获得积分10
12秒前
十一玮发布了新的文献求助10
13秒前
xdmhv完成签到,获得积分10
17秒前
18秒前
Akim应助Tian采纳,获得10
20秒前
水水的完成签到 ,获得积分10
22秒前
球球尧伞耳完成签到,获得积分10
25秒前
John完成签到,获得积分10
26秒前
28秒前
酷波er应助纯真猕猴桃采纳,获得10
28秒前
29秒前
didi发布了新的文献求助10
29秒前
万能图书馆应助qianqina采纳,获得30
29秒前
暮烟应助Lulul采纳,获得10
29秒前
虚幻的冬瓜完成签到 ,获得积分10
32秒前
小翼发布了新的文献求助10
34秒前
36秒前
39秒前
glay发布了新的文献求助10
43秒前
想睡觉的小笼包完成签到 ,获得积分10
43秒前
称心映寒完成签到 ,获得积分10
45秒前
isak完成签到 ,获得积分10
45秒前
rachel03发布了新的文献求助20
48秒前
某某完成签到 ,获得积分10
48秒前
51秒前
54秒前
巩佳铭发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969