已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy

计算机科学 人工智能 卷积神经网络 质心 深度学习 模式识别(心理学) 计算机视觉
作者
Elia Lombardo,Moritz Rabe,Yuqing Xiong,Lukas Nierer,Davide Cusumano,Lorenzo Placidi,Luca Boldrini,Stefanie Corradini,Maximilian Niyazi,Michael Reiner,Claus Belka,Christopher Kurz,Marco Riboldi,Guillaume Landry
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:182: 109555-109555 被引量:23
标识
DOI:10.1016/j.radonc.2023.109555
摘要

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. Materials and methods Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. Results The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. Conclusion LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
彭于晏应助cheese采纳,获得10
3秒前
小熊完成签到 ,获得积分10
3秒前
hehexuexi1关注了科研通微信公众号
3秒前
刘婉敏完成签到 ,获得积分10
5秒前
小波完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
Tomsen发布了新的文献求助10
11秒前
XCY发布了新的文献求助10
12秒前
高高发布了新的文献求助10
13秒前
陶醉紫菜发布了新的文献求助10
13秒前
XLX发布了新的文献求助10
13秒前
Army616完成签到,获得积分10
13秒前
ty12390发布了新的文献求助10
14秒前
16秒前
16秒前
chenyuns发布了新的文献求助10
17秒前
17秒前
李健应助slz采纳,获得10
19秒前
song完成签到 ,获得积分10
19秒前
19秒前
20秒前
大大大忽悠完成签到 ,获得积分10
20秒前
XCY完成签到,获得积分10
20秒前
枫泾完成签到,获得积分10
21秒前
SciGPT应助suodeheng采纳,获得20
21秒前
21秒前
21秒前
22秒前
魔幻安南完成签到 ,获得积分10
22秒前
24秒前
sswbzh应助yuebaoji采纳,获得50
26秒前
Z66发布了新的文献求助10
27秒前
hehexuexi1发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779546
求助须知:如何正确求助?哪些是违规求助? 5648402
关于积分的说明 15451994
捐赠科研通 4910795
什么是DOI,文献DOI怎么找? 2642900
邀请新用户注册赠送积分活动 1590549
关于科研通互助平台的介绍 1544981