Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy

计算机科学 人工智能 卷积神经网络 质心 深度学习 模式识别(心理学) 计算机视觉
作者
Elia Lombardo,Moritz Rabe,Yuqing Xiong,Lukas Nierer,Davide Cusumano,Lorenzo Placidi,Luca Boldrini,Stefanie Corradini,Maximilian Niyazi,M. J. Reiner,Claus Belka,Christopher Kurz,Marco Riboldi,Guillaume Landry
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:182: 109555-109555 被引量:18
标识
DOI:10.1016/j.radonc.2023.109555
摘要

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. Materials and methods Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. Results The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. Conclusion LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOT完成签到,获得积分10
刚刚
沫沫关注了科研通微信公众号
刚刚
XM发布了新的文献求助10
1秒前
大模型应助黄yellow采纳,获得10
2秒前
2秒前
汉堡包应助Another采纳,获得10
3秒前
善学以致用应助zhou采纳,获得10
3秒前
Hony132发布了新的文献求助10
5秒前
CC发布了新的文献求助10
6秒前
7秒前
生产队的LV完成签到,获得积分10
7秒前
7秒前
肥而不腻的羚羊完成签到,获得积分10
8秒前
Owen应助来来采纳,获得10
9秒前
9秒前
123发布了新的文献求助10
10秒前
邹长飞完成签到,获得积分20
10秒前
10秒前
znn关闭了znn文献求助
11秒前
orixero应助张虹采纳,获得10
11秒前
13秒前
善学以致用应助巴黎的防采纳,获得10
14秒前
谢慧蕴发布了新的文献求助10
14秒前
JamesPei应助123采纳,获得10
18秒前
王雨曦完成签到,获得积分10
19秒前
Schnappi完成签到,获得积分20
20秒前
20秒前
21秒前
22秒前
Leoling发布了新的文献求助10
22秒前
24秒前
沫沫发布了新的文献求助10
24秒前
26秒前
一坨发布了新的文献求助10
26秒前
巴黎的防发布了新的文献求助10
26秒前
26秒前
27秒前
ZYH完成签到 ,获得积分10
28秒前
28秒前
111发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712