亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy

计算机科学 人工智能 卷积神经网络 质心 深度学习 模式识别(心理学) 计算机视觉
作者
Elia Lombardo,Moritz Rabe,Yuqing Xiong,Lukas Nierer,Davide Cusumano,Lorenzo Placidi,Luca Boldrini,Stefanie Corradini,Maximilian Niyazi,Michael Reiner,Claus Belka,Christopher Kurz,Marco Riboldi,Guillaume Landry
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:182: 109555-109555 被引量:23
标识
DOI:10.1016/j.radonc.2023.109555
摘要

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. Materials and methods Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. Results The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. Conclusion LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Krim完成签到 ,获得积分0
2秒前
半城烟火发布了新的文献求助10
5秒前
O11完成签到,获得积分10
29秒前
Vaseegara完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
六六发布了新的文献求助10
1分钟前
完美世界应助颠覆乾坤采纳,获得10
1分钟前
舒适焦完成签到,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
1分钟前
Ldq应助科研通管家采纳,获得10
1分钟前
1分钟前
舒适焦发布了新的文献求助10
1分钟前
Rory完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助张贵虎采纳,获得10
2分钟前
2分钟前
HYQ发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
柯萝完成签到,获得积分10
2分钟前
张贵虎发布了新的文献求助10
2分钟前
2分钟前
安详的面包完成签到,获得积分20
2分钟前
2分钟前
田様应助张贵虎采纳,获得10
2分钟前
joeandrows留下了新的社区评论
2分钟前
精明凡双完成签到,获得积分10
2分钟前
3分钟前
汉堡包应助半夏采纳,获得10
3分钟前
3分钟前
颠覆乾坤发布了新的文献求助10
3分钟前
3分钟前
3分钟前
魔幻白羊发布了新的文献求助10
3分钟前
半夏发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064209
求助须知:如何正确求助?哪些是违规求助? 4287442
关于积分的说明 13358985
捐赠科研通 4105809
什么是DOI,文献DOI怎么找? 2248265
邀请新用户注册赠送积分活动 1253799
关于科研通互助平台的介绍 1185079