Accurate tumor segmentation and treatment outcome prediction with DeepTOP

分割 计算机科学 人工智能 卷积神经网络 深度学习 管道(软件) 磁共振成像 结果(博弈论) 机器学习 模式识别(心理学) 放射科 医学 数学 数理经济学 程序设计语言
作者
Lanlan Li,Bin Xu,Zhuokai Zhuang,Juan Li,Yihuang Hu,Hui Yang,Xiaolin Wang,Jinxin Lin,Ruwen Zhou,Weiwei Chen,Dongzhi Ran,Meijin Huang,Dabiao Wang,Yanxin Luo,Huichuan Yu
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:183: 109550-109550 被引量:15
标识
DOI:10.1016/j.radonc.2023.109550
摘要

Accurate outcome prediction prior to treatment can facilitate trial design and clinical decision making to achieve better treatment outcome.We developed the DeepTOP tool with deep learning approach for region-of-interest segmentation and clinical outcome prediction using magnetic resonance imaging (MRI). DeepTOP was constructed with an automatic pipeline from tumor segmentation to outcome prediction. In DeepTOP, the segmentation model used U-Net with a codec structure, and the prediction model was built with a three-layer convolutional neural network. In addition, the weight distribution algorithm was developed and applied in the prediction model to optimize the performance of DeepTOP.A total of 1889 MRI slices from 99 patients in the phase III multicenter randomized clinical trial (NCT01211210) on neoadjuvant treatment for rectal cancer was used to train and validate DeepTOP. We systematically optimized and validated DeepTOP with multiple devised pipelines in the clinical trial, demonstrating a better performance than other competitive algorithms in accurate tumor segmentation (Dice coefficient: 0.79; IoU: 0.75; slice-specific sensitivity: 0.98) and predicting pathological complete response to chemo/radiotherapy (accuracy: 0.789; specificity: 0.725; and sensitivity: 0.812). DeepTOP is a deep learning tool that could avoid manual labeling and feature extraction and realize automatic tumor segmentation and treatment outcome prediction by using the original MRI images.DeepTOP is open to provide a tractable framework for the development of other segmentation and predicting tools in clinical settings. DeepTOP-based tumor assessment can provide a reference for clinical decision making and facilitate imaging marker-driven trial design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助医院的孩子采纳,获得10
1秒前
nchudddd发布了新的文献求助10
1秒前
2秒前
hzh666完成签到,获得积分20
2秒前
王敬顺发布了新的文献求助10
2秒前
xx1发布了新的文献求助10
2秒前
Artin_Sun完成签到,获得积分10
5秒前
5秒前
华仔应助岳维芸采纳,获得10
5秒前
烟花应助岳维芸采纳,获得10
5秒前
yiyi完成签到,获得积分20
6秒前
杨二锤发布了新的文献求助10
6秒前
7秒前
7秒前
所所应助张巨锋采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
Wind应助科研通管家采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
litt应助科研通管家采纳,获得10
8秒前
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
李健的小迷弟应助金肆采纳,获得10
9秒前
11发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
可爱的函函应助gdh采纳,获得10
10秒前
10秒前
橘子发布了新的文献求助10
10秒前
11秒前
qqq完成签到 ,获得积分10
12秒前
猪猪猪发布了新的文献求助10
12秒前
李健的粉丝团团长应助Lin采纳,获得10
12秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233