Artificial intelligence in human activity recognition: a review

计算机科学 可穿戴计算机 活动识别 可穿戴技术 背景(考古学) 人工智能 人机交互 环境智能 运动传感器 运动检测 机器学习 运动(物理) 嵌入式系统 生物 古生物学
作者
Updesh Verma,Pratibha Tyagi,Manpreet Kaur
出处
期刊:International Journal of Sensor Networks [Inderscience Publishers]
卷期号:41 (1): 1-1 被引量:4
标识
DOI:10.1504/ijsnet.2023.128503
摘要

The various activities of human movements have been discussed for several years, such as sports activities, daily life activities, and so on. Their detection and classification have given crucial information about a person's behaviour and health status. So, there has always been a purpose for detecting and classifying these activities for real-life problems. Behavioural recognition, fall detection, intrusion detection, human health prediction model, ambulatory monitoring, smart access to electronic appliances, etc., are the main motives of the detection of physical activity in the context of daily life. Nowadays, various types of wearable sensors are available in tiny sizes due to the advancements in miniature technology in electronic devices, which proved very useful for detecting human motions. Here in this article, some important methodologies, physical activity basics, and their classification using machine learning and deep learning approaches are discussed in the context of wearable sensors. After reading this article, the researcher could summarise the whole theory and technical aspects of activity recognition. Wearable sensors have gained tremendous traction for sensing human motion due to their various advantages over other sensors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guangshuang发布了新的文献求助10
1秒前
2秒前
2秒前
大胆灵竹完成签到,获得积分20
3秒前
leyangya发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
傅晨玲完成签到,获得积分20
7秒前
GC发布了新的文献求助10
9秒前
兮阳完成签到,获得积分10
9秒前
10秒前
仗炮由纪发布了新的文献求助10
10秒前
11秒前
11秒前
ali发布了新的文献求助10
12秒前
万能图书馆应助xiao采纳,获得10
12秒前
LYZSh完成签到,获得积分10
14秒前
AC1号发布了新的文献求助50
14秒前
好好学习完成签到,获得积分10
14秒前
Foreverlost发布了新的文献求助20
14秒前
Preseverance完成签到,获得积分10
15秒前
pbj发布了新的文献求助10
16秒前
兮阳发布了新的文献求助10
17秒前
SYLH应助CDUT采纳,获得30
17秒前
資鼒完成签到,获得积分10
17秒前
17秒前
19秒前
可爱的函函应助pbj采纳,获得10
20秒前
冯同学完成签到 ,获得积分10
21秒前
打打应助研友_LaOrMZ采纳,获得10
21秒前
万能的土豆完成签到,获得积分10
22秒前
Ivy完成签到,获得积分20
22秒前
hn发布了新的文献求助30
22秒前
23秒前
唐瑾瑜完成签到,获得积分10
25秒前
qwerxx发布了新的文献求助30
25秒前
ali完成签到,获得积分10
26秒前
ultramantaro发布了新的文献求助50
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740075
求助须知:如何正确求助?哪些是违规求助? 3283039
关于积分的说明 10033509
捐赠科研通 2999895
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750374