Thermally enhanced osmotic power generation from salinity difference

渗透力 发电 缓压渗透 反向电渗析 温度梯度 功率密度 盐度 材料科学 功率(物理) 工作(物理) 发热 能量转换效率 热的 化学 光电子学 热力学 正渗透 物理 气象学 反渗透 生物 生物化学 生态学
作者
Jeonghoon Han,Young-Su Ko,Youngsuk Nam,Choongyeop Lee
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:672: 121451-121451 被引量:2
标识
DOI:10.1016/j.memsci.2023.121451
摘要

Recently, membrane-based power generation from salinity difference has been in the spotlight as a blue energy harvesting, but achieving a high power density and conversion efficiency still remains as a major challenge in this approach. Instead of developing new membranes, regulating the thermal condition within the membrane has been proposed as a way to enhance the power generation by several numerical studies, but this concept has rarely been explored through the systematic experimental studies due to the difficulty of imposing a controlled temperature gradient within the membrane. In this work, we experimentally and systematically study how the temperature difference can influence osmotic power generation using a commercial polycarbonate membrane and demonstrate that even when a thermal gradient is negligibly small within the nanoporous membrane, it is still possible to achieve a significant enhancement of the power generation. We propose that the effective ion concentration at the interfacial region between the reservoir and the membrane varies with the direction of the imposed temperature difference, such that the opposite direction of salinity and temperature differences can lead up to 5.3 times power enhancement as a result of the increase of the effective ion concentration ratio across the membrane. As an example of practical applications, we apply our findings to a floating type nanogenerator by incorporating a solar absorber to generate the temperature difference spontaneously under solar radiation conditions, and the results with the nanogenerator show that the power generation is indeed enhanced under both simulated and actual solar radiation conditions. We believe that our approach can be applied to any nanoporous membrane regardless of its thermal property, and therefore would provide a practical path to the power enhancement of reverse electrodialysis systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沅期发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
俭朴奇异果完成签到,获得积分10
2秒前
橙鹿鹿的猫完成签到,获得积分10
2秒前
2秒前
边港洋发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
笨男孩发布了新的文献求助10
7秒前
8秒前
8秒前
wanghao发布了新的文献求助10
8秒前
陈湫完成签到,获得积分10
9秒前
田様应助等待的寒松采纳,获得10
9秒前
害怕的白竹完成签到,获得积分10
10秒前
随心完成签到,获得积分10
10秒前
怕孤单的嚣完成签到,获得积分20
10秒前
lcxw1224完成签到,获得积分10
10秒前
11秒前
长常九久发布了新的文献求助10
12秒前
15503116087发布了新的文献求助10
12秒前
大个应助初之采纳,获得10
13秒前
te发布了新的文献求助10
13秒前
边港洋完成签到,获得积分10
15秒前
15秒前
凤羽发布了新的文献求助10
16秒前
灵巧听露发布了新的文献求助10
16秒前
可爱的函函应助猫猫无敌采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
20秒前
爆米花应助刁弘睿采纳,获得10
20秒前
20秒前
20秒前
缥缈海云完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425