BuildMapper: A fully learnable framework for vectorized building contour extraction

初始化 计算机科学 顶点(图论) 人工智能 模式识别(心理学) 基本事实 分割 计算机视觉 理论计算机科学 图形 程序设计语言
作者
Shiqing Wei,Tao Zhang,Shunping Ji,Muying Luo,Jianya Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 87-104 被引量:36
标识
DOI:10.1016/j.isprsjprs.2023.01.015
摘要

Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods. We also confirmed that more than 60.0/50.8% of the building polygons predicted by BuildMapper in the WHU-Mix (vector) test sets I/II, 84.2% in the WHU building test set, and 68.3% in the CrowdAI test set are on par with the manual delineation level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Millennial完成签到,获得积分10
1秒前
2秒前
yongfeng完成签到,获得积分10
2秒前
lx完成签到,获得积分10
3秒前
踏实志泽发布了新的文献求助10
3秒前
科研通AI2S应助迢迢万里采纳,获得10
4秒前
爱吃西瓜发布了新的文献求助10
4秒前
Azyyyy完成签到,获得积分10
5秒前
开朗的戎完成签到,获得积分10
5秒前
paul完成签到,获得积分10
5秒前
Xiny完成签到,获得积分10
6秒前
阿纯完成签到,获得积分10
6秒前
小松鼠完成签到 ,获得积分10
6秒前
善学以致用应助浮笙采纳,获得10
6秒前
自由莺完成签到 ,获得积分10
6秒前
Doc邓爱科研完成签到,获得积分10
6秒前
zsmj23发布了新的文献求助10
7秒前
冰儿菲菲完成签到,获得积分10
7秒前
廿七完成签到,获得积分10
7秒前
summer完成签到,获得积分10
7秒前
7秒前
如意以南发布了新的文献求助10
8秒前
reneeyan58完成签到,获得积分10
10秒前
大模型应助普渡药康采纳,获得10
10秒前
ZYN完成签到,获得积分10
11秒前
whisper完成签到,获得积分10
12秒前
chx2256120完成签到,获得积分10
13秒前
13秒前
爆米花应助勇敢牛牛采纳,获得30
13秒前
Muye完成签到,获得积分20
13秒前
AI完成签到,获得积分10
13秒前
如意以南完成签到,获得积分20
14秒前
呀呀呀呀完成签到,获得积分10
14秒前
阿宅完成签到,获得积分10
14秒前
15秒前
15秒前
卡卡卡发布了新的文献求助10
15秒前
15秒前
自然的千筹完成签到,获得积分10
15秒前
jianjiao完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012