BuildMapper: A fully learnable framework for vectorized building contour extraction

初始化 计算机科学 顶点(图论) 人工智能 模式识别(心理学) 基本事实 分割 计算机视觉 理论计算机科学 图形 程序设计语言
作者
Shiqing Wei,Tao Zhang,Shunping Ji,Muying Luo,Jianya Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 87-104 被引量:51
标识
DOI:10.1016/j.isprsjprs.2023.01.015
摘要

Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods. We also confirmed that more than 60.0/50.8% of the building polygons predicted by BuildMapper in the WHU-Mix (vector) test sets I/II, 84.2% in the WHU building test set, and 68.3% in the CrowdAI test set are on par with the manual delineation level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊玉林完成签到,获得积分10
1秒前
Hello应助山复尔尔采纳,获得10
1秒前
贝贝发布了新的文献求助10
1秒前
炸鸡加热发布了新的文献求助10
1秒前
1秒前
仁爱誉发布了新的文献求助10
1秒前
2秒前
李爱国应助LiYuan采纳,获得10
2秒前
miachen应助超帅依秋采纳,获得10
2秒前
太空工程师完成签到,获得积分10
2秒前
搜集达人应助陈月华采纳,获得30
3秒前
wsx4321应助Totravel采纳,获得50
3秒前
4秒前
Ray完成签到,获得积分10
4秒前
KKKK发布了新的文献求助10
4秒前
4秒前
Kinkin发布了新的文献求助200
5秒前
5秒前
ChenCC发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
李健应助minel采纳,获得10
8秒前
董翰发布了新的文献求助10
8秒前
小鬼发布了新的文献求助10
9秒前
Sam完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
握不住的沙完成签到,获得积分10
10秒前
南乔发布了新的文献求助10
10秒前
活力迎梦发布了新的文献求助10
10秒前
珂颜堂AI应助仙林AK47采纳,获得40
10秒前
研友_VZG7GZ应助忧虑的鹭洋采纳,获得10
11秒前
11秒前
心怡完成签到,获得积分10
12秒前
顾矜应助smartpig02采纳,获得50
13秒前
zybbb发布了新的文献求助20
13秒前
13秒前
大个应助时飞采纳,获得10
14秒前
LiYuan发布了新的文献求助10
14秒前
传奇3应助冷艳冷安采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939388
求助须知:如何正确求助?哪些是违规求助? 4205811
关于积分的说明 13071712
捐赠科研通 3984189
什么是DOI,文献DOI怎么找? 2181538
邀请新用户注册赠送积分活动 1197342
关于科研通互助平台的介绍 1109574