亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BuildMapper: A fully learnable framework for vectorized building contour extraction

初始化 计算机科学 顶点(图论) 人工智能 模式识别(心理学) 基本事实 分割 计算机视觉 理论计算机科学 图形 程序设计语言
作者
Shiqing Wei,Tao Zhang,Shunping Ji,Muying Luo,Jianya Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 87-104 被引量:51
标识
DOI:10.1016/j.isprsjprs.2023.01.015
摘要

Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods. We also confirmed that more than 60.0/50.8% of the building polygons predicted by BuildMapper in the WHU-Mix (vector) test sets I/II, 84.2% in the WHU building test set, and 68.3% in the CrowdAI test set are on par with the manual delineation level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
sxl发布了新的文献求助10
2秒前
Nick_YFWS完成签到,获得积分10
3秒前
6秒前
BetterH完成签到 ,获得积分10
6秒前
7秒前
10秒前
mdomse2109完成签到,获得积分10
10秒前
Aimeee发布了新的文献求助10
11秒前
天天快乐应助tdtk采纳,获得10
13秒前
mdomse2109发布了新的文献求助10
15秒前
李雅琳完成签到 ,获得积分10
18秒前
上官若男应助qlh采纳,获得10
18秒前
开放素完成签到 ,获得积分0
22秒前
WuFen完成签到 ,获得积分10
26秒前
35秒前
37秒前
傅家庆完成签到 ,获得积分10
39秒前
43秒前
shaylie完成签到 ,获得积分10
44秒前
Owen应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮浮世世应助科研通管家采纳,获得30
52秒前
浮游应助科研通管家采纳,获得10
52秒前
Owen应助科研通管家采纳,获得10
52秒前
55秒前
ilk666完成签到,获得积分10
57秒前
1997SD完成签到,获得积分10
59秒前
ding应助伶俐的高烽采纳,获得10
1分钟前
dolabmu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Dr.YYF.发布了新的文献求助10
1分钟前
CipherSage应助Zylan采纳,获得10
1分钟前
HD发布了新的文献求助10
1分钟前
1997SD发布了新的文献求助10
1分钟前
1分钟前
tdtk发布了新的文献求助10
1分钟前
昆工完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456