BuildMapper: A fully learnable framework for vectorized building contour extraction

初始化 计算机科学 顶点(图论) 人工智能 模式识别(心理学) 基本事实 分割 计算机视觉 理论计算机科学 图形 程序设计语言
作者
Shiqing Wei,Tao Zhang,Shunping Ji,Muying Luo,Jianya Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 87-104 被引量:69
标识
DOI:10.1016/j.isprsjprs.2023.01.015
摘要

Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods. We also confirmed that more than 60.0/50.8% of the building polygons predicted by BuildMapper in the WHU-Mix (vector) test sets I/II, 84.2% in the WHU building test set, and 68.3% in the CrowdAI test set are on par with the manual delineation level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唯唯诺诺完成签到,获得积分10
刚刚
韩嘉琦发布了新的文献求助10
刚刚
bee发布了新的文献求助10
刚刚
再一发布了新的文献求助10
刚刚
胡图图完成签到,获得积分10
1秒前
panyang发布了新的文献求助10
1秒前
w。发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
阿财发布了新的文献求助10
4秒前
4秒前
asdfg123发布了新的文献求助10
4秒前
疑问完成签到,获得积分10
4秒前
5秒前
科研通AI6应助xuan采纳,获得10
5秒前
善学以致用应助xuan采纳,获得10
5秒前
Owen应助xuan采纳,获得10
5秒前
汉堡包应助xuan采纳,获得10
5秒前
深情安青应助xuan采纳,获得10
5秒前
情怀应助xuan采纳,获得10
5秒前
Jared应助xuan采纳,获得10
5秒前
qingxu应助xuan采纳,获得10
5秒前
桐桐应助xuan采纳,获得10
5秒前
酷波er应助xuan采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
5秒前
三岁应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
一个果儿应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407