BuildMapper: A fully learnable framework for vectorized building contour extraction

初始化 计算机科学 顶点(图论) 人工智能 模式识别(心理学) 基本事实 分割 计算机视觉 理论计算机科学 图形 程序设计语言
作者
Shiqing Wei,Tao Zhang,Shunping Ji,Muying Luo,Jianya Gong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 87-104 被引量:36
标识
DOI:10.1016/j.isprsjprs.2023.01.015
摘要

Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods. We also confirmed that more than 60.0/50.8% of the building polygons predicted by BuildMapper in the WHU-Mix (vector) test sets I/II, 84.2% in the WHU building test set, and 68.3% in the CrowdAI test set are on par with the manual delineation level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助sansan采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助杰森斯坦虎采纳,获得10
1秒前
3秒前
4秒前
研友_QQC完成签到,获得积分10
4秒前
NeuroWhite完成签到,获得积分10
4秒前
4秒前
搜索v完成签到,获得积分10
5秒前
liuchuck完成签到 ,获得积分10
5秒前
5秒前
5秒前
猫独秀完成签到,获得积分10
5秒前
7秒前
buno应助yuefeng采纳,获得10
7秒前
yiming完成签到,获得积分10
7秒前
落落发布了新的文献求助10
8秒前
清秋若月完成签到 ,获得积分10
8秒前
8秒前
呵呵呵呵完成签到,获得积分10
9秒前
9秒前
远方发布了新的文献求助10
10秒前
zxc111关注了科研通微信公众号
10秒前
11秒前
nanhe698发布了新的文献求助10
11秒前
Huang完成签到,获得积分10
11秒前
碳土不凡完成签到 ,获得积分10
12秒前
12秒前
淡淡采白发布了新的文献求助10
13秒前
13秒前
14秒前
Akim应助dingdong采纳,获得10
14秒前
14秒前
14秒前
satchzhao发布了新的文献求助10
14秒前
可爱的函函应助尺素寸心采纳,获得10
14秒前
66发布了新的文献求助10
15秒前
一鸣完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808