亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ORSI Salient Object Detection via Bidimensional Attention and Full-Stage Semantic Guidance

计算机科学 GSM演进的增强数据速率 突出 人工智能 目标检测 点(几何) 计算机视觉 机器学习 模式识别(心理学) 几何学 数学
作者
Yubin Gu,Honghui Xu,Yueqian Quan,Wanjun Chen,Jianwei Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:39
标识
DOI:10.1109/tgrs.2023.3243769
摘要

The application of optical remote sensing images (ORSIs) is prevalent in many fields. Accordingly, ORSI-oriented salient object detection (SOD) has attracted more attention in recent years. However, yet many previously proposed methods present appealing performance in natural scene images (NSIs), they are difficult to be directly extended to remote sensing images due to the more complex scenes, such as blended backgrounds and diversiform topological shapes. Most specifically designed models often fail to achieve satisfactory results due to the weak usage of edge information and the ignorance of attention loss. Besides, computational inefficiency often causes poor applicability. To solve these problems, we propose a new model, namely, Bidimensional Attention and Full-stage Semantic Guidance Network (BAFS-Net), containing an edge guidance branch and a mainstream detection branch. Concretely, edge guidance generates boundary information, in which supervision with border labels is imposed to highlight the salient regions and plays a complementary role on the main branch. The mainstream detection branch involves two important components, i.e., bidimensional attention modules (BAMs) and semantic-guided fusion modules (SGFMs). Between these two, BAM uniformly assembles channel and spatial attention in an efficient and rational manner, addressing the open issue of dimensionwisely attention computation. SGFM hammers at the fusion of high-level features and low-level features. Moreover, the semantic maps are employed to interact with SGFM in full stages. Our approach surpasses most state-of-the-art RSI-SOD methods proposed in recent years, with respect to the accuracy, parameter size, computational cost, and floating point operations per second (FLOPS). The code is available at https://github.com/ZhengJianwei2/BAFS-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Stellarshi517采纳,获得20
19秒前
33秒前
kuiuLinvk发布了新的文献求助10
36秒前
41秒前
kuiuLinvk完成签到,获得积分10
44秒前
zsmj23完成签到 ,获得积分0
44秒前
采薇发布了新的文献求助10
46秒前
55秒前
科研通AI6.1应助小博采纳,获得10
56秒前
归尘发布了新的文献求助10
57秒前
1分钟前
彭于晏应助凛玖niro采纳,获得10
1分钟前
Stellarshi517发布了新的文献求助20
1分钟前
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助Marshall采纳,获得10
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助风听你讲采纳,获得10
1分钟前
1分钟前
小博发布了新的文献求助10
1分钟前
Marshall发布了新的文献求助10
1分钟前
nie完成签到 ,获得积分10
1分钟前
凛玖niro完成签到,获得积分10
1分钟前
Marshall完成签到,获得积分10
2分钟前
ADJ完成签到,获得积分10
2分钟前
Orange应助Judy1111采纳,获得10
2分钟前
谨慎的夏发布了新的文献求助10
2分钟前
迷路千琴完成签到,获得积分10
2分钟前
FashionBoy应助迷路千琴采纳,获得10
2分钟前
香蕉面包完成签到 ,获得积分10
3分钟前
Sandy完成签到,获得积分0
3分钟前
Sandy发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577