ORSI Salient Object Detection via Bidimensional Attention and Full-Stage Semantic Guidance

计算机科学 GSM演进的增强数据速率 突出 人工智能 目标检测 点(几何) 计算机视觉 机器学习 模式识别(心理学) 几何学 数学
作者
Yubin Gu,Honghui Xu,Yueqian Quan,Wanjun Chen,Jianwei Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:14
标识
DOI:10.1109/tgrs.2023.3243769
摘要

The application of optical remote sensing images (ORSIs) is prevalent in many fields. Accordingly, ORSI-oriented salient object detection (SOD) has attracted more attention in recent years. However, yet many previously proposed methods present appealing performance in natural scene images (NSIs), they are difficult to be directly extended to remote sensing images due to the more complex scenes, such as blended backgrounds and diversiform topological shapes. Most specifically designed models often fail to achieve satisfactory results due to the weak usage of edge information and the ignorance of attention loss. Besides, computational inefficiency often causes poor applicability. To solve these problems, we propose a new model, namely, Bidimensional Attention and Full-stage Semantic Guidance Network (BAFS-Net), containing an edge guidance branch and a mainstream detection branch. Concretely, edge guidance generates boundary information, in which supervision with border labels is imposed to highlight the salient regions and plays a complementary role on the main branch. The mainstream detection branch involves two important components, i.e., bidimensional attention modules (BAMs) and semantic-guided fusion modules (SGFMs). Between these two, BAM uniformly assembles channel and spatial attention in an efficient and rational manner, addressing the open issue of dimensionwisely attention computation. SGFM hammers at the fusion of high-level features and low-level features. Moreover, the semantic maps are employed to interact with SGFM in full stages. Our approach surpasses most state-of-the-art RSI-SOD methods proposed in recent years, with respect to the accuracy, parameter size, computational cost, and floating point operations per second (FLOPS). The code is available at https://github.com/ZhengJianwei2/BAFS-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灰灰发布了新的文献求助10
1秒前
丘比特应助Morch2021采纳,获得10
1秒前
科研通AI2S应助ohNANANA采纳,获得10
2秒前
桐桐应助QDL采纳,获得10
2秒前
段asd发布了新的文献求助30
2秒前
xaogny发布了新的文献求助10
3秒前
李爱国应助Cc采纳,获得10
3秒前
相信相信的力量完成签到,获得积分10
4秒前
长青完成签到,获得积分10
4秒前
怡然诗霜完成签到,获得积分10
4秒前
4秒前
WW发布了新的文献求助10
4秒前
4秒前
5秒前
帅气的伯云完成签到,获得积分20
5秒前
现代师发布了新的文献求助10
7秒前
zip发布了新的文献求助10
7秒前
忧伤的真菌完成签到,获得积分10
7秒前
静oo完成签到,获得积分10
7秒前
8秒前
伊布完成签到,获得积分10
8秒前
8秒前
落后乘风完成签到 ,获得积分10
9秒前
iu发布了新的文献求助10
9秒前
9秒前
科目三应助xiaofei采纳,获得10
11秒前
Aten完成签到,获得积分10
12秒前
12秒前
12秒前
张欣桐发布了新的文献求助10
12秒前
Morch2021发布了新的文献求助10
13秒前
小东同志发布了新的文献求助10
13秒前
杨杨完成签到 ,获得积分10
14秒前
泡泡糖发布了新的文献求助20
14秒前
水果完成签到 ,获得积分10
14秒前
bkagyin应助露露采纳,获得10
14秒前
15秒前
15秒前
Aten发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154