Real-time pricing method for VPP demand response based on PER-DDPG algorithm

需求响应 计算机科学 算法 数学优化 工程类 电气工程 数学
作者
Xiangyu Kong,Wenqi Lu,Jianzhong Wu,Chengshan Wang,Xv Zhao,Wei Hu,Yu Shen
出处
期刊:Energy [Elsevier]
卷期号:271: 127036-127036 被引量:16
标识
DOI:10.1016/j.energy.2023.127036
摘要

Through ad vanced information communication and management system, virtual power plant (VPP) can realize the aggregation and coordination optimization of distributed energy, energy storage system, controllable load and other distributed energy resources. However, when making real-time price decisions according to users' demand response (DR) characteristics, the optimization effect of VPP is still limited by the evaluation accuracy of users’ DR potential and the computational burden of continuous decisions. By combining gate recurrent unit (GRU) and attention mechanism (AM), Neural Turing Machine (NTM) can extract users' response features in different environments and improve the accuracy of evaluating DR potential. Subsequently, based on the evaluation results, a deep deterministic policy gradient (DDPG) algorithm relying on prioritized experience replay (PER) is used to formulate a real-time electricity price plan. Ultimately, VPP achieves multi-objective optimization through DR management, which helps to increase the consumption amount of renewable energy resources, smooth its power fluctuation, and reduce users' electricity cost. Case study results show that the proposed method can improve the accuracy of the DR potential evaluation, reduce the response deviation to about 3%, and enhance the real-time decision calculation efficiency by 17%, which helps to optimize the smooth consumption of renewable energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Zz采纳,获得10
1秒前
1秒前
sungcin完成签到,获得积分10
1秒前
林岚发布了新的文献求助10
1秒前
1秒前
ihonest完成签到,获得积分0
2秒前
2秒前
tantan完成签到,获得积分10
2秒前
知来者之可追完成签到,获得积分10
2秒前
2秒前
Lucas应助无敌小宽哥采纳,获得10
3秒前
Alone离殇发布了新的文献求助30
3秒前
3秒前
3秒前
北夏暖完成签到,获得积分10
4秒前
4秒前
李霄炫关注了科研通微信公众号
4秒前
水木发布了新的文献求助10
4秒前
5秒前
珍珠发布了新的文献求助30
5秒前
5秒前
JJK0901发布了新的文献求助10
5秒前
5秒前
lsss完成签到,获得积分10
5秒前
李健应助净水涟漪采纳,获得10
6秒前
6秒前
6秒前
SKinner发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
研友_8y2G0L完成签到,获得积分10
8秒前
sumugeng完成签到,获得积分10
8秒前
8秒前
gaoyunfeng完成签到,获得积分10
8秒前
番fan发布了新的文献求助10
9秒前
坤123完成签到,获得积分10
9秒前
yi111发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419