Pre-trained combustion model and transfer learning in thermoacoustic instability

物理 人工智能 模式识别(心理学) 可解释性 编码器 不稳定性 学习迁移 计算机科学 机械 操作系统
作者
Ziyu Qin,Xinyao Wang,Xiao Han,Yuzhen Lin,Yuchen Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:5
标识
DOI:10.1063/5.0142378
摘要

In this paper, deep learning is involved to comprehend thermoacoustic instability more deeply and achieve early warning more reliably. Flame images and pressure series are acquired in model combustors. A total of seven data domains are obtained by changing the combustor structural parameters. Then, the pre-trained model TIPE (Thermoacoustic Image-Pressure Encoder), containing an image encoder with ResNet architecture and a pressure encoder with transformer architecture, is trained through the contrastive self-supervised task of aligning the image and pressure signals in the embedding space. Furthermore, transfer learning in thermoacoustic instability prediction is performed based on k-nearest neighbors. Results show that the pre-trained model can better resist the negative effect caused by class imbalance. The weighted F1 score of the pre-trained model is 6.72% and 2.61% larger than supervised models in zero-shot transfer and few-shot transfer, respectively. It is inferred that the more generic features encoded by TIPE result in superior generalization in comparison with traditional supervised methods. Moreover, our proposed method is insensitive to the thresholds of determining thermoacoustic states. Principal component analysis reveals the physical interpretability preliminarily through the connection between feature principal components and pressure fluctuation amplitudes. Finally, the key spatial region of flame images and temporal interval of pressure series are visualized by class activation map and global attention scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jogrgr发布了新的文献求助10
刚刚
lll发布了新的文献求助10
1秒前
生气的鸡蛋完成签到,获得积分10
1秒前
qi发布了新的文献求助10
1秒前
zino发布了新的文献求助10
2秒前
2秒前
2秒前
stt发布了新的文献求助10
3秒前
小蘑菇应助杏花饼采纳,获得10
3秒前
海棠yiyi发布了新的文献求助50
3秒前
camellia完成签到 ,获得积分10
4秒前
4秒前
4秒前
田様应助柠木采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
5秒前
5秒前
5秒前
威武的万仇完成签到 ,获得积分10
6秒前
迷路的水彤完成签到 ,获得积分10
6秒前
千里发布了新的文献求助10
6秒前
jogrgr完成签到,获得积分10
6秒前
夯大力完成签到,获得积分10
6秒前
啊娴仔完成签到,获得积分10
7秒前
7秒前
7秒前
韭菜发布了新的文献求助10
7秒前
Harlotte发布了新的文献求助20
8秒前
思源应助系统提示采纳,获得10
8秒前
蜡笔发布了新的文献求助30
8秒前
宋嬴一发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
HYLynn应助hetao286采纳,获得10
10秒前
12秒前
12秒前
夯大力发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740