Numerical Investigation with Experimental Validation of Heat and Mass Transfer during Evaporation in the Porous Wick within a Loop Heat Pipe

回路热管 传热 毛细管作用 热力学 热管 材料科学 机械 热流密度 饱和(图论) 蒸发器 传质 蒸发 临界热流密度 毯子 两相流 化学 复合材料 流量(数学) 热交换器 物理 组合数学 数学
作者
suzheng Zheng,Binyao Lin,Chenyang Zhao,Xue Zhou,Nanxi Li,Deping Dong
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 2088-2088 被引量:2
标识
DOI:10.3390/en16052088
摘要

The heat transfer performance of the evaporator significantly affects the heat transfer capacity of the loop heat pipe (LHP). The vapor blanket can be formed once the vapor penetrates the wick especially at high heat flux, resulting in an unsaturated state of the wick and deteriorating the evaporator performance. It is crucial to understand the liquid–vapor behavior for enhancing the LHP performance by investigating the fundamental heat and mass transfer in the wick with phase-change. However, previous modeling studies only considered a single-phase flow or complete saturation in the wick, and the capillary effect on the fluid states was rarely taken into account. The present work developed two mathematical models based on the assumptions of saturated and unsaturated wicks. The fluid states were analyzed at the liquid–vapor interface under the consideration of the capillary effect, and a pore-scale evaporation model was applied to study the phase change behavior and interfacial heat and mass transfer. The relative permeability was introduced to describe the two-phase flow in the porous wick, and the capillary force was modeled as a function of the local saturation in the two-phase region. The temperature results calculated by the models were compared with the experimental results, and the assumption that the vapor penetration leads to deterioration of evaporator performance at high heat flux was validated. Vapor blanket thickness can be estimated through the saturation profile, which provides a simple and effective method. It was also found that the capillary number ω was the key factor affecting the thickness of the vapor blanket. The greater the ω, the faster the vapor blanket thickness increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助张i鹅采纳,获得10
1秒前
白衣发布了新的文献求助20
2秒前
3秒前
3秒前
马哥完成签到,获得积分20
4秒前
4秒前
铱星完成签到,获得积分10
5秒前
diaoyulao完成签到,获得积分10
5秒前
5秒前
Lucy完成签到 ,获得积分10
5秒前
璐璐核桃露关注了科研通微信公众号
5秒前
momentoftime给momentoftime的求助进行了留言
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小蘑菇应助吃桂花的芒果采纳,获得10
7秒前
王哪跑12发布了新的文献求助10
7秒前
smile发布了新的文献求助10
8秒前
MoNeng完成签到,获得积分10
9秒前
gaojy完成签到 ,获得积分10
10秒前
式微发布了新的文献求助10
10秒前
落后寒凡发布了新的文献求助10
10秒前
李丽冰发布了新的文献求助10
11秒前
徐嘉鸿发布了新的文献求助10
11秒前
11秒前
11秒前
牛牛完成签到,获得积分10
12秒前
李2003完成签到,获得积分10
12秒前
14秒前
舒服的依云完成签到 ,获得积分10
15秒前
科研通AI5应助白衣采纳,获得20
15秒前
17秒前
Edward完成签到,获得积分10
17秒前
研之有理给研之有理的求助进行了留言
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
机智如霜发布了新的文献求助10
19秒前
Orange应助程容纬采纳,获得10
19秒前
露风清夏完成签到,获得积分10
19秒前
上官若男应助学术垃圾采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990904
求助须知:如何正确求助?哪些是违规求助? 4239640
关于积分的说明 13207664
捐赠科研通 4034323
什么是DOI,文献DOI怎么找? 2207244
邀请新用户注册赠送积分活动 1218305
关于科研通互助平台的介绍 1136629