已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synergies of Radiomics and Transcriptomics in Lung Cancer Diagnosis: A Pilot Study

无线电技术 放射基因组学 肺癌 转录组 DNA微阵列 Lasso(编程语言) 计算生物学 人工智能 计算机科学 医学 数据挖掘 基因 肿瘤科 生物 基因表达 遗传学 万维网
作者
Aikaterini Dovrou,Ekaterini S. Bei,Stelios Sfakianakis,Kostas Marias,Nikolaos Papanikolaou,Michalis Zervakis
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (4): 738-738 被引量:4
标识
DOI:10.3390/diagnostics13040738
摘要

Radiotranscriptomics is an emerging field that aims to investigate the relationships between the radiomic features extracted from medical images and gene expression profiles that contribute in the diagnosis, treatment planning, and prognosis of cancer. This study proposes a methodological framework for the investigation of these associations with application on non-small-cell lung cancer (NSCLC). Six publicly available NSCLC datasets with transcriptomics data were used to derive and validate a transcriptomic signature for its ability to differentiate between cancer and non-malignant lung tissue. A publicly available dataset of 24 NSCLC-diagnosed patients, with both transcriptomic and imaging data, was used for the joint radiotranscriptomic analysis. For each patient, 749 Computed Tomography (CT) radiomic features were extracted and the corresponding transcriptomics data were provided through DNA microarrays. The radiomic features were clustered using the iterative K-means algorithm resulting in 77 homogeneous clusters, represented by meta-radiomic features. The most significant differentially expressed genes (DEGs) were selected by performing Significance Analysis of Microarrays (SAM) and 2-fold change. The interactions among the CT imaging features and the selected DEGs were investigated using SAM and a Spearman rank correlation test with a False Discovery Rate (FDR) of 5%, leading to the extraction of 73 DEGs significantly correlated with radiomic features. These genes were used to produce predictive models of the meta-radiomics features, defined as p-metaomics features, by performing Lasso regression. Of the 77 meta-radiomic features, 51 can be modeled in terms of the transcriptomic signature. These significant radiotranscriptomics relationships form a reliable basis to biologically justify the radiomics features extracted from anatomic imaging modalities. Thus, the biological value of these radiomic features was justified via enrichment analysis on their transcriptomics-based regression models, revealing closely associated biological processes and pathways. Overall, the proposed methodological framework provides joint radiotranscriptomics markers and models to support the connection and complementarities between the transcriptome and the phenotype in cancer, as demonstrated in the case of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry发布了新的文献求助10
1秒前
负责凛完成签到,获得积分10
1秒前
3秒前
wyz完成签到 ,获得积分10
4秒前
sugarballer完成签到 ,获得积分10
5秒前
橙啊程完成签到 ,获得积分10
6秒前
wang完成签到 ,获得积分10
6秒前
6秒前
8秒前
8秒前
刘刘溜完成签到 ,获得积分10
8秒前
8秒前
九日橙完成签到 ,获得积分10
12秒前
jerry完成签到,获得积分10
12秒前
孤独元容发布了新的文献求助10
12秒前
Someone发布了新的文献求助10
12秒前
灵巧大地完成签到,获得积分10
13秒前
开放素完成签到 ,获得积分10
13秒前
Bressanone完成签到,获得积分10
15秒前
糖醋里脊加醋完成签到 ,获得积分10
15秒前
卷心菜的菜完成签到 ,获得积分10
15秒前
ChenkLuo完成签到 ,获得积分10
17秒前
传奇3应助研友_5ZlY68采纳,获得10
18秒前
yuqinghui98完成签到 ,获得积分10
19秒前
顾矜应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
DrLee完成签到,获得积分10
20秒前
为你钟情完成签到 ,获得积分10
20秒前
符fu完成签到 ,获得积分10
20秒前
21秒前
zzzzzttt完成签到 ,获得积分10
21秒前
共享精神应助香菜菜菜子采纳,获得10
22秒前
二行完成签到 ,获得积分10
22秒前
李思超完成签到 ,获得积分10
22秒前
专一的乐枫完成签到,获得积分10
23秒前
vkk完成签到 ,获得积分10
23秒前
三十七度小火炉完成签到 ,获得积分10
25秒前
英姑应助有热心愿意采纳,获得10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477372
求助须知:如何正确求助?哪些是违规求助? 3068797
关于积分的说明 9109635
捐赠科研通 2760290
什么是DOI,文献DOI怎么找? 1514752
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699547