重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Embankment crack detection in UAV images based on efficient channel attention U2Net

残余物 计算机科学 卷积(计算机科学) 分割 人工智能 解码方法 块(置换群论) 干扰(通信) 频道(广播) 编码(集合论) 算法 模式识别(心理学) 计算机视觉 人工神经网络 数学 几何学 电信 集合(抽象数据类型) 程序设计语言
作者
Haodong Cheng,Yijing Li,Huokun Li,Qiang Hu
出处
期刊:Structures [Elsevier]
卷期号:50: 430-443 被引量:23
标识
DOI:10.1016/j.istruc.2023.02.010
摘要

Rapid and accurate extraction of cracks present on the surface of concrete embankments is an important basis for assessing the structural health of embankments and maintaining structural stability. In this paper, a multimechanism fusion U2Net model is proposed for identifying embankment cracks with complex backgrounds and diverse morphologies. We replaced the normal convolution in RSU with depthwise separable convolution and atrous convolution to build UBlock-AS; added the ECA attention mechanism to the last layer of the sampling stage on UBlock-AS to build a new residual structure RSU-ECA-AS; and combined this residual structure with the U2Net model to build the U2Net-ECA-AS model to achieve automatic learning of crack features. Among them, the atrous convolution can obtain a larger reception field without reducing the resolution; the depthwise separable convolution helps to lighten the model; and the ECA can suppress the interference of each residual block during encoding and decoding, improving the model performance at a very small cost. Compared with the semantic segmentation models commonly used in deep learning, the method improves the accuracy of extracting features at different stages of the crack, reduces the model training cost, speeds up the model convergence and improves the model's interference resistance. Finally, a sliding window is designed to make the method applicable to a large range of UAV image detection, and a connected domain search algorithm is used to reduce the false detection rate. The experiments compare U2Net-ECA-AS with five crack segmentation networks (FCN, SegNet, UNet, ERFNet and DeepCrack), and three different attention mechanisms (CBMA, SE and ECA), to verify the effectiveness of the improved model. The method also obtained an IOU of 80.45% and an F1-score of 88.88% in the experiments on the UAV dike dataset. The experiments demonstrate that the method provides a new solution for embankment crack detection, and the results can provide data support for crack repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王硕完成签到,获得积分10
刚刚
刚刚
害怕的板凳完成签到 ,获得积分10
刚刚
刚刚
甲虫发布了新的文献求助10
刚刚
刚刚
刚刚
吴宵完成签到,获得积分10
1秒前
文静从雪发布了新的文献求助10
1秒前
微笑的语芙完成签到,获得积分10
1秒前
haku发布了新的文献求助10
1秒前
1秒前
sdd完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
huangjixiang发布了新的文献求助10
2秒前
饭饭大王发布了新的文献求助10
3秒前
疯狂硕士完成签到,获得积分20
3秒前
3秒前
张毅德完成签到 ,获得积分10
3秒前
大方友菱关注了科研通微信公众号
3秒前
聪明天玉完成签到,获得积分10
3秒前
4秒前
赘婿应助眯眯眼的枕头采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
Nano完成签到,获得积分10
6秒前
丘比特应助安静的寒蕾采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
文静从雪完成签到,获得积分10
8秒前
许小六发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI6应助酷炫的语梦采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567