Embankment crack detection in UAV images based on efficient channel attention U2Net

残余物 计算机科学 卷积(计算机科学) 分割 人工智能 解码方法 块(置换群论) 干扰(通信) 频道(广播) 编码(集合论) 算法 模式识别(心理学) 计算机视觉 人工神经网络 数学 几何学 电信 集合(抽象数据类型) 程序设计语言
作者
Haodong Cheng,Yijing Li,Huokun Li,Qiang Hu
出处
期刊:Structures [Elsevier]
卷期号:50: 430-443 被引量:12
标识
DOI:10.1016/j.istruc.2023.02.010
摘要

Rapid and accurate extraction of cracks present on the surface of concrete embankments is an important basis for assessing the structural health of embankments and maintaining structural stability. In this paper, a multimechanism fusion U2Net model is proposed for identifying embankment cracks with complex backgrounds and diverse morphologies. We replaced the normal convolution in RSU with depthwise separable convolution and atrous convolution to build UBlock-AS; added the ECA attention mechanism to the last layer of the sampling stage on UBlock-AS to build a new residual structure RSU-ECA-AS; and combined this residual structure with the U2Net model to build the U2Net-ECA-AS model to achieve automatic learning of crack features. Among them, the atrous convolution can obtain a larger reception field without reducing the resolution; the depthwise separable convolution helps to lighten the model; and the ECA can suppress the interference of each residual block during encoding and decoding, improving the model performance at a very small cost. Compared with the semantic segmentation models commonly used in deep learning, the method improves the accuracy of extracting features at different stages of the crack, reduces the model training cost, speeds up the model convergence and improves the model's interference resistance. Finally, a sliding window is designed to make the method applicable to a large range of UAV image detection, and a connected domain search algorithm is used to reduce the false detection rate. The experiments compare U2Net-ECA-AS with five crack segmentation networks (FCN, SegNet, UNet, ERFNet and DeepCrack), and three different attention mechanisms (CBMA, SE and ECA), to verify the effectiveness of the improved model. The method also obtained an IOU of 80.45% and an F1-score of 88.88% in the experiments on the UAV dike dataset. The experiments demonstrate that the method provides a new solution for embankment crack detection, and the results can provide data support for crack repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喝汤一样完成签到,获得积分10
刚刚
刚刚
刚刚
wormzjl发布了新的文献求助10
刚刚
虚拟的眼神完成签到,获得积分10
2秒前
陈_Ccc完成签到 ,获得积分10
2秒前
文静达完成签到,获得积分10
2秒前
rui发布了新的文献求助30
2秒前
CC发布了新的文献求助10
2秒前
2秒前
兴奋的果汁完成签到,获得积分10
3秒前
3秒前
3秒前
浮三白完成签到,获得积分10
3秒前
爆米花应助沉静的夜玉采纳,获得10
4秒前
aodilee完成签到,获得积分10
4秒前
思源应助非常可爱采纳,获得20
4秒前
4秒前
沉静哲瀚发布了新的文献求助10
4秒前
高高的凡旋关注了科研通微信公众号
5秒前
Li完成签到,获得积分10
5秒前
经法发布了新的文献求助10
5秒前
FengyaoWang完成签到,获得积分10
5秒前
陶醉的向珊完成签到,获得积分10
6秒前
xczhu完成签到,获得积分10
6秒前
6秒前
cheng完成签到,获得积分10
7秒前
hecarli完成签到,获得积分10
7秒前
W哇发布了新的文献求助30
7秒前
Jenny应助AD采纳,获得10
7秒前
田様应助闪闪飞机采纳,获得10
8秒前
8秒前
写不出来发布了新的文献求助10
8秒前
mary完成签到,获得积分10
8秒前
甲基醚完成签到 ,获得积分10
9秒前
兴奋的凝丝完成签到,获得积分10
9秒前
reck发布了新的文献求助10
10秒前
缥缈的语雪完成签到 ,获得积分10
10秒前
feifei发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672