已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Embankment crack detection in UAV images based on efficient channel attention U2Net

残余物 计算机科学 卷积(计算机科学) 分割 人工智能 解码方法 块(置换群论) 干扰(通信) 频道(广播) 编码(集合论) 算法 模式识别(心理学) 计算机视觉 人工神经网络 数学 几何学 电信 集合(抽象数据类型) 程序设计语言
作者
Haodong Cheng,Yijing Li,Huokun Li,Qiang Hu
出处
期刊:Structures [Elsevier]
卷期号:50: 430-443 被引量:23
标识
DOI:10.1016/j.istruc.2023.02.010
摘要

Rapid and accurate extraction of cracks present on the surface of concrete embankments is an important basis for assessing the structural health of embankments and maintaining structural stability. In this paper, a multimechanism fusion U2Net model is proposed for identifying embankment cracks with complex backgrounds and diverse morphologies. We replaced the normal convolution in RSU with depthwise separable convolution and atrous convolution to build UBlock-AS; added the ECA attention mechanism to the last layer of the sampling stage on UBlock-AS to build a new residual structure RSU-ECA-AS; and combined this residual structure with the U2Net model to build the U2Net-ECA-AS model to achieve automatic learning of crack features. Among them, the atrous convolution can obtain a larger reception field without reducing the resolution; the depthwise separable convolution helps to lighten the model; and the ECA can suppress the interference of each residual block during encoding and decoding, improving the model performance at a very small cost. Compared with the semantic segmentation models commonly used in deep learning, the method improves the accuracy of extracting features at different stages of the crack, reduces the model training cost, speeds up the model convergence and improves the model's interference resistance. Finally, a sliding window is designed to make the method applicable to a large range of UAV image detection, and a connected domain search algorithm is used to reduce the false detection rate. The experiments compare U2Net-ECA-AS with five crack segmentation networks (FCN, SegNet, UNet, ERFNet and DeepCrack), and three different attention mechanisms (CBMA, SE and ECA), to verify the effectiveness of the improved model. The method also obtained an IOU of 80.45% and an F1-score of 88.88% in the experiments on the UAV dike dataset. The experiments demonstrate that the method provides a new solution for embankment crack detection, and the results can provide data support for crack repair.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
黑糖珍珠完成签到 ,获得积分10
4秒前
飞翔发布了新的文献求助10
5秒前
一只小羊发布了新的文献求助10
6秒前
仁爱的平凡关注了科研通微信公众号
8秒前
开心木木发布了新的文献求助10
9秒前
jc_HSC完成签到,获得积分10
10秒前
共享精神应助进击的野草采纳,获得10
13秒前
健忘丹珍完成签到,获得积分10
15秒前
勤劳悒完成签到,获得积分10
16秒前
搜集达人应助dwgwushan采纳,获得30
28秒前
ASH完成签到,获得积分10
32秒前
35秒前
个性半山完成签到 ,获得积分10
36秒前
36秒前
38秒前
38秒前
海派Hi发布了新的文献求助10
40秒前
典雅的涟妖完成签到,获得积分10
40秒前
40秒前
41秒前
41秒前
paul完成签到,获得积分10
43秒前
馍馍发布了新的文献求助10
44秒前
xudanhong发布了新的文献求助10
44秒前
Akim应助赵晨雪采纳,获得10
47秒前
天天快乐应助科研通管家采纳,获得10
48秒前
领导范儿应助科研通管家采纳,获得10
48秒前
嗯嗯应助科研通管家采纳,获得10
48秒前
48秒前
嗯嗯应助科研通管家采纳,获得10
48秒前
小蘑菇应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
嗯嗯应助科研通管家采纳,获得10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
在水一方应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282