Embankment crack detection in UAV images based on efficient channel attention U2Net

残余物 计算机科学 卷积(计算机科学) 分割 人工智能 解码方法 块(置换群论) 干扰(通信) 频道(广播) 编码(集合论) 算法 模式识别(心理学) 计算机视觉 人工神经网络 数学 几何学 电信 集合(抽象数据类型) 程序设计语言
作者
Haodong Cheng,Yijing Li,Huokun Li,Qiang Hu
出处
期刊:Structures [Elsevier BV]
卷期号:50: 430-443 被引量:23
标识
DOI:10.1016/j.istruc.2023.02.010
摘要

Rapid and accurate extraction of cracks present on the surface of concrete embankments is an important basis for assessing the structural health of embankments and maintaining structural stability. In this paper, a multimechanism fusion U2Net model is proposed for identifying embankment cracks with complex backgrounds and diverse morphologies. We replaced the normal convolution in RSU with depthwise separable convolution and atrous convolution to build UBlock-AS; added the ECA attention mechanism to the last layer of the sampling stage on UBlock-AS to build a new residual structure RSU-ECA-AS; and combined this residual structure with the U2Net model to build the U2Net-ECA-AS model to achieve automatic learning of crack features. Among them, the atrous convolution can obtain a larger reception field without reducing the resolution; the depthwise separable convolution helps to lighten the model; and the ECA can suppress the interference of each residual block during encoding and decoding, improving the model performance at a very small cost. Compared with the semantic segmentation models commonly used in deep learning, the method improves the accuracy of extracting features at different stages of the crack, reduces the model training cost, speeds up the model convergence and improves the model's interference resistance. Finally, a sliding window is designed to make the method applicable to a large range of UAV image detection, and a connected domain search algorithm is used to reduce the false detection rate. The experiments compare U2Net-ECA-AS with five crack segmentation networks (FCN, SegNet, UNet, ERFNet and DeepCrack), and three different attention mechanisms (CBMA, SE and ECA), to verify the effectiveness of the improved model. The method also obtained an IOU of 80.45% and an F1-score of 88.88% in the experiments on the UAV dike dataset. The experiments demonstrate that the method provides a new solution for embankment crack detection, and the results can provide data support for crack repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
levoglucosan完成签到,获得积分10
4秒前
12秒前
小小智完成签到,获得积分0
15秒前
韭黄发布了新的文献求助10
19秒前
Grace159完成签到 ,获得积分10
20秒前
cn完成签到 ,获得积分10
21秒前
liu完成签到,获得积分10
22秒前
乐乐应助关外李少采纳,获得10
27秒前
猪猪女孩完成签到,获得积分10
31秒前
呆萌的小海豚完成签到,获得积分10
34秒前
wanci应助洁净斑马采纳,获得10
34秒前
悦耳寒云完成签到,获得积分20
34秒前
积极从蕾应助Ryan采纳,获得10
37秒前
闫佳美完成签到,获得积分10
37秒前
37秒前
滴滴滴完成签到 ,获得积分10
40秒前
larychen完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
沐风听雨完成签到 ,获得积分10
42秒前
43秒前
当女遇到乔完成签到 ,获得积分10
45秒前
46秒前
tongkaibing完成签到,获得积分10
48秒前
WXR完成签到,获得积分10
48秒前
真实的采白完成签到 ,获得积分10
49秒前
Ryan完成签到,获得积分10
50秒前
小稻草人完成签到,获得积分10
50秒前
洁净斑马发布了新的文献求助10
50秒前
SOL完成签到 ,获得积分10
51秒前
米奇的妙妙屋完成签到 ,获得积分10
52秒前
Lynn完成签到 ,获得积分10
55秒前
洁净斑马完成签到,获得积分10
57秒前
科研小白完成签到,获得积分10
1分钟前
金枪鱼子发布了新的文献求助10
1分钟前
1分钟前
dinhogj完成签到,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
王小凡完成签到 ,获得积分10
1分钟前
CAOHOU应助dddd采纳,获得10
1分钟前
Smiling完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015