Embankment crack detection in UAV images based on efficient channel attention U2Net

残余物 计算机科学 卷积(计算机科学) 分割 人工智能 解码方法 块(置换群论) 干扰(通信) 频道(广播) 编码(集合论) 算法 模式识别(心理学) 计算机视觉 人工神经网络 数学 几何学 电信 集合(抽象数据类型) 程序设计语言
作者
Haodong Cheng,Yijing Li,Huokun Li,Qiang Hu
出处
期刊:Structures [Elsevier]
卷期号:50: 430-443 被引量:23
标识
DOI:10.1016/j.istruc.2023.02.010
摘要

Rapid and accurate extraction of cracks present on the surface of concrete embankments is an important basis for assessing the structural health of embankments and maintaining structural stability. In this paper, a multimechanism fusion U2Net model is proposed for identifying embankment cracks with complex backgrounds and diverse morphologies. We replaced the normal convolution in RSU with depthwise separable convolution and atrous convolution to build UBlock-AS; added the ECA attention mechanism to the last layer of the sampling stage on UBlock-AS to build a new residual structure RSU-ECA-AS; and combined this residual structure with the U2Net model to build the U2Net-ECA-AS model to achieve automatic learning of crack features. Among them, the atrous convolution can obtain a larger reception field without reducing the resolution; the depthwise separable convolution helps to lighten the model; and the ECA can suppress the interference of each residual block during encoding and decoding, improving the model performance at a very small cost. Compared with the semantic segmentation models commonly used in deep learning, the method improves the accuracy of extracting features at different stages of the crack, reduces the model training cost, speeds up the model convergence and improves the model's interference resistance. Finally, a sliding window is designed to make the method applicable to a large range of UAV image detection, and a connected domain search algorithm is used to reduce the false detection rate. The experiments compare U2Net-ECA-AS with five crack segmentation networks (FCN, SegNet, UNet, ERFNet and DeepCrack), and three different attention mechanisms (CBMA, SE and ECA), to verify the effectiveness of the improved model. The method also obtained an IOU of 80.45% and an F1-score of 88.88% in the experiments on the UAV dike dataset. The experiments demonstrate that the method provides a new solution for embankment crack detection, and the results can provide data support for crack repair.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX发布了新的文献求助10
刚刚
等待凡英发布了新的文献求助10
1秒前
1秒前
michen发布了新的文献求助10
2秒前
ren关注了科研通微信公众号
2秒前
lay发布了新的文献求助10
3秒前
CodeCraft应助热心市民采纳,获得10
3秒前
Orange应助开放鹤轩采纳,获得30
3秒前
狗子棋发布了新的文献求助10
4秒前
4秒前
4秒前
赵睿老婆完成签到 ,获得积分10
4秒前
ziyuexu发布了新的文献求助10
5秒前
airvince发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
大个应助wallonce采纳,获得10
7秒前
7秒前
7秒前
bkagyin应助zsl采纳,获得10
8秒前
赘婿应助知性的睫毛膏采纳,获得10
10秒前
10秒前
wei完成签到,获得积分10
11秒前
561发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
华仔应助LX采纳,获得30
13秒前
阔达惜天应助等待凡英采纳,获得10
14秒前
无极微光应助冷静青文采纳,获得20
14秒前
lay完成签到,获得积分10
14秒前
15秒前
xxc发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
jackie发布了新的文献求助10
17秒前
汉堡包应助Plusonezzz采纳,获得30
18秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282