材料科学
电解质
锂(药物)
阳极
杂质
兴奋剂
相(物质)
电化学
晶界
金属
化学工程
离子
冶金
复合材料
电极
微观结构
光电子学
物理化学
医学
化学
有机化学
工程类
内分泌学
物理
量子力学
作者
Jun Li,Hao Luo,Keke Liu,Jiaxu Zhang,Huiyu Zhai,Xianli Su,Jinsong Wu,Xinfeng Tang,Gangjian Tan
标识
DOI:10.1021/acsami.2c21603
摘要
Ga-doped garnet-type Li7La3Zr2O12 (Ga-LLZO) ceramics have long been recognized as ideal electrolyte candidates for all-solid-state lithium batteries (ASSLBs). However, in this study, it is shown that Ga-LLZO easily and promptly cracks in contact with molten lithium during the ASSLB assembly. This can be mainly ascribed to two aspects: (i) lithium captures O atoms and reduces Ga ions of the Ga-LLZO matrix, leading to a band-gap closure from >5 to <2 eV and a structural collapse from cubic to tetrahedral; and (ii) the in situ-formed LiGaO2 impurity phase has severe side reactions with lithium, resulting in huge stress release along the grain boundaries. It is also revealed that, while the former process consumes hours to take effect, the latter one is immediate and accounts for the crack propagation of Ga-LLZO electrolytes. A minute SiO2 is preadded during the synthesis of Ga-LLZO and found effective in eliminating the LiGaO2 impurity phase. The SiO2-modified Ga-LLZO solid electrolytes display excellent thermomechanical and electrochemical stabilities against lithium metals and well-reserved ionic conductivities, which was further confirmed by half-cells and full batteries. This study contributes to the understanding of the stability of garnet electrolytes and promotes their potential commercial applications in ASSLBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI