已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes

妊娠期糖尿病 数字健康 医学 医疗保健 可穿戴计算机 计算机科学 人工智能 怀孕 妊娠期 嵌入式系统 遗传学 经济 生物 经济增长
作者
Huiqi Lu,Xiaorong Ding,Jane E. Hirst,Yang Yang,Jenny Yang,Lucy Mackillop,David A. Clifton
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17: 98-117 被引量:8
标识
DOI:10.1109/rbme.2023.3242261
摘要

Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助juan采纳,获得10
6秒前
随心完成签到 ,获得积分10
6秒前
orixero应助hhc采纳,获得10
9秒前
SciGPT应助尉迟衣采纳,获得10
9秒前
隐形曼青应助骑驴找马采纳,获得10
9秒前
10秒前
11秒前
荞麦面发布了新的文献求助10
14秒前
含蓄的明雪应助小猪琪琪采纳,获得10
14秒前
16秒前
oceanao应助苏小喵采纳,获得10
17秒前
MIUMIU发布了新的文献求助10
18秒前
www268完成签到 ,获得积分10
19秒前
Feifei133发布了新的文献求助10
20秒前
lurongjun发布了新的文献求助10
22秒前
27秒前
李健应助Feifei133采纳,获得10
29秒前
sun发布了新的文献求助10
30秒前
31秒前
文武发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
37秒前
38秒前
shinysparrow应助科研通管家采纳,获得100
38秒前
居居应助科研通管家采纳,获得20
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
41秒前
Lucas应助Murphy采纳,获得10
41秒前
深情安青应助lurongjun采纳,获得10
42秒前
田様应助小松鼠采纳,获得10
43秒前
44秒前
丘比特应助荞麦面采纳,获得10
45秒前
orixero应助尼罗河的南墙采纳,获得10
47秒前
完美的一斩完成签到,获得积分10
47秒前
陶醉的熊发布了新的文献求助10
47秒前
Thanatos应助sukasuka采纳,获得10
49秒前
50秒前
51秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956