Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes

妊娠期糖尿病 数字健康 医学 医疗保健 可穿戴计算机 计算机科学 人工智能 怀孕 妊娠期 嵌入式系统 遗传学 经济 生物 经济增长
作者
Huiqi Lu,Xiaorong Ding,Jane E. Hirst,Yang Yang,Jenny Yang,Lucy Mackillop,David A. Clifton
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17: 98-117 被引量:13
标识
DOI:10.1109/rbme.2023.3242261
摘要

Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾无忧发布了新的文献求助10
刚刚
dopamine发布了新的文献求助10
1秒前
deng203发布了新的文献求助30
1秒前
ling发布了新的文献求助10
1秒前
典雅的荣轩完成签到,获得积分10
2秒前
3秒前
快毕业的研究生完成签到,获得积分10
3秒前
殷昭慧完成签到,获得积分10
5秒前
CNS一作发布了新的文献求助10
5秒前
xxxllllll发布了新的文献求助10
5秒前
科研通AI5应助茅鑫雨采纳,获得10
6秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
6秒前
昊努力完成签到,获得积分20
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
cyyf发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
9秒前
MH应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
劲秉应助整齐的灭绝采纳,获得20
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得20
9秒前
烟花应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
独特的思烟关注了科研通微信公众号
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732692
求助须知:如何正确求助?哪些是违规求助? 3276827
关于积分的说明 9999066
捐赠科研通 2992492
什么是DOI,文献DOI怎么找? 1642273
邀请新用户注册赠送积分活动 780263
科研通“疑难数据库(出版商)”最低求助积分说明 748720