亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma

青光眼 光学相干层析成像 卷积神经网络 人工智能 深度学习 计算机科学 视神经 点云 分割 眼科 医学 模式识别(心理学)
作者
Alexandre H Thiéry,Fabian Braeu,Tin A Tun,Tin Aung,Michaël J A Girard
出处
期刊:Translational Vision Science & Technology [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:12 (2): 23-23 被引量:1
标识
DOI:10.1167/tvst.12.2.23
摘要

(1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) convolutional neural network (CNN), and with a gold-standard parameter, namely, the retinal nerve fiber layer (RNFL) thickness.Scans of the optic nerve head were acquired with OCT for 477 glaucoma and 2296 nonglaucoma subjects. All volumes were automatically segmented using deep learning to identify seven major neural and connective tissues. Each optic nerve head was then represented as a 3D point cloud with approximately 1000 points. Geometric deep learning (PointNet) was then used to provide a glaucoma diagnosis from a single 3D point cloud. The performance of our approach (reported using the area under the curve [AUC]) was compared with that obtained with a 3D CNN, and with the RNFL thickness.PointNet was able to provide a robust glaucoma diagnosis solely from a 3D point cloud (AUC = 0.95 ± 0.01).The performance of PointNet was superior to that obtained with a 3D CNN (AUC = 0.87 ± 0.02 [raw OCT images] and 0.91 ± 0.02 [segmented OCT images]) and with that obtained from RNFL thickness alone (AUC = 0.80 ± 0.03).We provide a proof of principle for the application of geometric deep learning in glaucoma. Our technique requires significantly less information as input to perform better than a 3D CNN, and with an AUC superior to that obtained from RNFL thickness.Geometric deep learning may help us to improve and simplify diagnosis and prognosis applications in glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱心完成签到 ,获得积分10
3秒前
Rewi_Zhang完成签到,获得积分10
4秒前
8秒前
鬼鬼发布了新的文献求助10
13秒前
16秒前
18秒前
鬼鬼完成签到,获得积分10
19秒前
fane发布了新的文献求助30
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
22秒前
27秒前
fane完成签到,获得积分10
29秒前
33秒前
39秒前
Shueason完成签到 ,获得积分10
53秒前
上官若男应助白华苍松采纳,获得10
58秒前
58秒前
Akim应助朝露由希采纳,获得20
1分钟前
1分钟前
朝露由希发布了新的文献求助20
1分钟前
1分钟前
xiyin发布了新的文献求助10
1分钟前
香蕉觅云应助加菲丰丰采纳,获得10
1分钟前
Hello应助朝露由希采纳,获得10
1分钟前
FashionBoy应助嘚嘚采纳,获得10
1分钟前
自然的南露完成签到 ,获得积分10
2分钟前
tylscxf完成签到,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
savesunshine1022完成签到,获得积分10
2分钟前
2分钟前
2分钟前
加菲丰丰举报赵本山求助涉嫌违规
2分钟前
Markereins发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959988
关于积分的说明 8597988
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444464
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727