Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma

青光眼 光学相干层析成像 卷积神经网络 人工智能 深度学习 计算机科学 视神经 点云 分割 眼科 医学 模式识别(心理学)
作者
Alexandre H Thiéry,Fabian Braeu,Tin A Tun,Tin Aung,Michaël J A Girard
出处
期刊:Translational Vision Science & Technology [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:12 (2): 23-23 被引量:1
标识
DOI:10.1167/tvst.12.2.23
摘要

(1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) convolutional neural network (CNN), and with a gold-standard parameter, namely, the retinal nerve fiber layer (RNFL) thickness.Scans of the optic nerve head were acquired with OCT for 477 glaucoma and 2296 nonglaucoma subjects. All volumes were automatically segmented using deep learning to identify seven major neural and connective tissues. Each optic nerve head was then represented as a 3D point cloud with approximately 1000 points. Geometric deep learning (PointNet) was then used to provide a glaucoma diagnosis from a single 3D point cloud. The performance of our approach (reported using the area under the curve [AUC]) was compared with that obtained with a 3D CNN, and with the RNFL thickness.PointNet was able to provide a robust glaucoma diagnosis solely from a 3D point cloud (AUC = 0.95 ± 0.01).The performance of PointNet was superior to that obtained with a 3D CNN (AUC = 0.87 ± 0.02 [raw OCT images] and 0.91 ± 0.02 [segmented OCT images]) and with that obtained from RNFL thickness alone (AUC = 0.80 ± 0.03).We provide a proof of principle for the application of geometric deep learning in glaucoma. Our technique requires significantly less information as input to perform better than a 3D CNN, and with an AUC superior to that obtained from RNFL thickness.Geometric deep learning may help us to improve and simplify diagnosis and prognosis applications in glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yutoa完成签到,获得积分10
刚刚
深情安青应助黄臻采纳,获得10
1秒前
2秒前
2秒前
大模型应助朝朝采纳,获得10
2秒前
3秒前
4秒前
无极微光应助qw采纳,获得20
5秒前
5秒前
不吃香菜发布了新的文献求助10
5秒前
李健的粉丝团团长应助墨z采纳,获得10
5秒前
5秒前
结实的XMZ发布了新的文献求助10
6秒前
6秒前
6秒前
小南完成签到,获得积分10
6秒前
salvage完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
陈小瑜完成签到,获得积分10
8秒前
JamesPei应助开朗的山彤采纳,获得10
8秒前
酷波er应助开朗的山彤采纳,获得10
8秒前
9秒前
yaoyao110发布了新的文献求助10
9秒前
溟夔蝶魅发布了新的文献求助10
9秒前
小蘑菇应助asir_xw采纳,获得10
10秒前
10秒前
10秒前
old杜发布了新的文献求助10
11秒前
小锤发布了新的文献求助10
11秒前
lucky发布了新的文献求助10
12秒前
lyb发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
14秒前
负责的香魔完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051