Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma

青光眼 光学相干层析成像 卷积神经网络 人工智能 深度学习 计算机科学 视神经 点云 分割 眼科 医学 模式识别(心理学)
作者
Alexandre H Thiéry,Fabian Braeu,Tin A Tun,Tin Aung,Michaël J A Girard
出处
期刊:Translational Vision Science & Technology [Association for Research in Vision and Ophthalmology]
卷期号:12 (2): 23-23 被引量:1
标识
DOI:10.1167/tvst.12.2.23
摘要

(1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) convolutional neural network (CNN), and with a gold-standard parameter, namely, the retinal nerve fiber layer (RNFL) thickness.Scans of the optic nerve head were acquired with OCT for 477 glaucoma and 2296 nonglaucoma subjects. All volumes were automatically segmented using deep learning to identify seven major neural and connective tissues. Each optic nerve head was then represented as a 3D point cloud with approximately 1000 points. Geometric deep learning (PointNet) was then used to provide a glaucoma diagnosis from a single 3D point cloud. The performance of our approach (reported using the area under the curve [AUC]) was compared with that obtained with a 3D CNN, and with the RNFL thickness.PointNet was able to provide a robust glaucoma diagnosis solely from a 3D point cloud (AUC = 0.95 ± 0.01).The performance of PointNet was superior to that obtained with a 3D CNN (AUC = 0.87 ± 0.02 [raw OCT images] and 0.91 ± 0.02 [segmented OCT images]) and with that obtained from RNFL thickness alone (AUC = 0.80 ± 0.03).We provide a proof of principle for the application of geometric deep learning in glaucoma. Our technique requires significantly less information as input to perform better than a 3D CNN, and with an AUC superior to that obtained from RNFL thickness.Geometric deep learning may help us to improve and simplify diagnosis and prognosis applications in glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyy发布了新的文献求助10
刚刚
Maisie发布了新的文献求助10
1秒前
天书完成签到 ,获得积分10
1秒前
1秒前
圆滑的铁勺完成签到,获得积分10
2秒前
Archy发布了新的文献求助10
2秒前
3秒前
jal发布了新的文献求助20
3秒前
3秒前
3秒前
天书关注了科研通微信公众号
4秒前
芊芊完成签到 ,获得积分10
4秒前
coke发布了新的文献求助20
5秒前
mmmgc完成签到,获得积分10
6秒前
6秒前
吹吹完成签到,获得积分10
7秒前
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
完美世界应助Transition采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
張医铄发布了新的文献求助10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
赘婿应助yy采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
沈ff发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545