Anonym-Recognizer

计算机科学 面部识别系统 身份(音乐) 面子(社会学概念) 人工智能 三维人脸识别 人脸检测 图像(数学) 光学(聚焦) 嵌入 计算机视觉 模式识别(心理学) 社会科学 物理 光学 社会学 声学
作者
Chunlei Peng,Shuang Wan,Zimin Miao,Decheng Liu,Yu Zheng,Nannan Wang
标识
DOI:10.1145/3552458.3556442
摘要

With the widespread application of big data technology, we are exposed to more and more video monitoring. To prevent serious social problems caused by face data leakage, face anonymization has become an important kind of method to protect face privacy. The face anonymization mentioned in this paper refers to the anonymization generation of the visual appearance in face images. Existing face anonymization methods mainly focus on removing identity information. However, in the scenario of face recognition technology that needs to protect privacy, existing face anonymization technology makes anonymized faces that can no longer be used for face recognition, limiting the application scope of face anonymization. Therefore, when using face anonymization, it is equally important to ensure that the anonymized face images can still be used for downstream tasks such as face recognition. To this end, we propose Anonym-Recognizer, a relationship-preserving face anonymization and recognition method. Our method uses relationship cyphertext which can be any binary identity number representing the identity of the image owner and designs a generative adversarial network to perform face anonymization and relationship cyphertexts embedding. In our framework, we first use Visual Anonymizer to manipulate the visual appearance of the input image, then use Cyphertext Embedder to get the anonymized image with the identity information embedded. With the help of Anonym Recognizer, the face recognition system can extract the relationship cyphertexts from the anonymized image as the credentials to match the identity information. The proposed Anonym-Recognizer provides a new perspective for the recognition and application of anonymized face images. Experiments on the Megaface dataset show that our method can encourage a 100% recognition accuracy on anonymized faces while finishing the task of face anonymization with high qualitative and quantitative quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrugRD完成签到 ,获得积分10
2秒前
2秒前
4秒前
樊樊完成签到 ,获得积分10
5秒前
sissiarno应助kjhr采纳,获得200
6秒前
霸气小蘑菇完成签到,获得积分10
7秒前
7秒前
NAOKI应助郭先生采纳,获得10
7秒前
AaronW应助dandiaojun采纳,获得10
8秒前
无奈应助Zhangqiuyu采纳,获得10
9秒前
小二郎应助zxfaaaaa采纳,获得10
9秒前
11秒前
天真的道罡完成签到 ,获得积分10
12秒前
12秒前
_hhhjhhh完成签到,获得积分10
13秒前
13秒前
14秒前
椰子冰完成签到,获得积分10
15秒前
16秒前
Crystal发布了新的文献求助10
16秒前
慕青应助小雷采纳,获得10
16秒前
16秒前
17秒前
向日葵完成签到,获得积分10
17秒前
Owen应助Mircale采纳,获得10
17秒前
17秒前
在水一方应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
积极慕梅应助科研通管家采纳,获得20
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
MoonFlows应助科研通管家采纳,获得30
18秒前
Hello应助科研通管家采纳,获得30
18秒前
慕青应助科研通管家采纳,获得10
18秒前
欧阳万仇发布了新的文献求助10
20秒前
h嘿发布了新的文献求助10
20秒前
忧虑的怜晴完成签到 ,获得积分10
20秒前
研友_841e4L完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198