Improved classification of soil As contamination at continental scale: Resolving class imbalances using machine learning approach

污染 环境科学 土壤污染 比例(比率) 计算机科学 土壤水分 土壤科学 机器学习 地图学 生态学 生物 地理
作者
Tao Hu,Kechao Li,Chundi Ma,Nana Zhou,Qiusong Chen,Chongchong Qi
出处
期刊:Chemosphere [Elsevier]
卷期号:363: 142697-142697 被引量:3
标识
DOI:10.1016/j.chemosphere.2024.142697
摘要

The identification of arsenic (As)-contaminated areas is an important prerequisite for soil management and reclamation. Although previous studies have attempted to identify soil As contamination via machine learning (ML) methods combined with soil spectroscopy, they have ignored the rarity of As-contaminated soil samples, leading to an imbalanced learning problem. A novel ML framework was thus designed herein to solve the imbalance issue in identifying soil As contamination from soil visible and near-infrared spectra. Spectral preprocessing, imbalanced dataset resampling, and model comparisons were combined in the ML framework, and the optimal combination was selected based on the recall. In addition, Bayesian optimization was used to tune the model hyperparameters. The optimized model achieved recall, area under the curve, and balanced accuracy values of 0.83, 0.88, and 0.79, respectively, on the testing set. The recall was further improved to 0.87 with the threshold adjustment, indicating the model's excellent performance and generalization capability in classifying As-contaminated soil samples. The optimal model was applied to a global soil spectral dataset to predict areas at a high risk of soil As contamination on a global scale. The ML framework established in this study represents a milestone in the classification of soil As contamination and can serve as a valuable reference for contamination management in soil science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89eBO8完成签到 ,获得积分10
刚刚
隐形曼青应助ZeJ采纳,获得10
刚刚
刚刚
隐形曼青应助温暖的钻石采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
2秒前
123cxj发布了新的文献求助10
3秒前
星辰大海应助红红采纳,获得10
3秒前
sweetbearm应助小周采纳,获得10
4秒前
科研通AI5应助赖道之采纳,获得10
4秒前
5秒前
HonamC完成签到,获得积分10
6秒前
十三十四十五完成签到,获得积分10
7秒前
潇洒的问夏完成签到 ,获得积分10
9秒前
无声瀑布完成签到,获得积分10
9秒前
Bingtao_Lian完成签到 ,获得积分10
10秒前
小布丁完成签到 ,获得积分10
10秒前
竹筏过海应助季生采纳,获得30
11秒前
12秒前
buno应助22采纳,获得10
13秒前
赘婿应助TT采纳,获得10
14秒前
14秒前
14秒前
15秒前
Jenny应助赖道之采纳,获得10
17秒前
依古比古完成签到 ,获得积分10
19秒前
汎影发布了新的文献求助10
19秒前
小二完成签到,获得积分10
19秒前
20秒前
22秒前
顾矜应助长情洙采纳,获得10
22秒前
monere发布了新的文献求助30
22秒前
Xiaoxiao应助汉关采纳,获得10
24秒前
24秒前
汎影完成签到,获得积分10
25秒前
26秒前
Chen发布了新的文献求助10
28秒前
WW完成签到,获得积分10
28秒前
30秒前
hyjcnhyj完成签到,获得积分10
31秒前
英姑应助赖道之采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808