CREVNet: a Transformer and CNN-based network for accurate segmentation of ice shelf crevasses

分割 计算机科学 地质学 人工智能
作者
Kang Zheng,Qian Li,Zemin Wang,Jiachun An,Feiyang Huang,Mingliang Liu,Shuai Bao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2024.3407860
摘要

The segmentation of crevasses in remote sensing images plays a pivotal role in diverse domains, including crevasse change monitoring, analysis of ice shelf surface water systems, and investigations into ice shelf stability. In response to the limitations in existing crevasses segmentation methods, which struggle to concurrently capture global structures while preserving local details, this letter introduces CREVNet. CREVNet is designed to achieve precise crevasse segmentation, comprising two integral components: the Transformer Path for enhanced local and global feature extraction, and the Convolutional Path for detailed depiction of crevasses. Evaluation on crevasses dataset, created through the integration of optical remote sensing imagery and laser altimetry data, reveals impressive results. CREVNet achieves F1-score, MIoU, and OA values of 80.40%, 80.98%, and 95.24%, respectively. Notably, CREVNet surpasses the performance of prominent deep learning methods, including Unet, DeepLabV3Plus, DFANet, FPN, MobileViT, and TransUnet. These outcomes underscore CREVNet's practical potential for effective crevasses segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
犹豫千儿发布了新的文献求助10
刚刚
2秒前
lemon发布了新的文献求助10
3秒前
4秒前
修语发布了新的文献求助30
4秒前
李天发布了新的文献求助10
4秒前
刘原青发布了新的文献求助10
5秒前
汪汪发布了新的文献求助10
5秒前
7秒前
蜜桃奇迹发布了新的文献求助10
7秒前
8秒前
xiaoxiao发布了新的文献求助10
10秒前
香蕉觅云应助修语采纳,获得10
10秒前
科研混子完成签到,获得积分10
11秒前
jia完成签到,获得积分20
11秒前
11秒前
12秒前
hetaopier发布了新的文献求助10
14秒前
jia发布了新的文献求助10
14秒前
青青完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
科研通AI5应助蜜桃奇迹采纳,获得10
19秒前
Hello应助HeLL0采纳,获得10
19秒前
韩梦完成签到,获得积分10
20秒前
yy应助刘洪均采纳,获得10
21秒前
22秒前
爆米花应助科研通管家采纳,获得10
23秒前
23秒前
英姑应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
23秒前
情怀应助科研通管家采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814