Exploring Communication Efficient Strategies in Federated Learning Systems

计算机科学 联合学习 人机交互 分布式计算
作者
Akarsh K. Nair,Jayakrushna Sahoo,Ebin Deni Raj
出处
期刊:Apple Academic Press eBooks [Apple Academic Press]
卷期号:: 153-182
标识
DOI:10.1201/9781003497196-7
摘要

Federated learning is a distributed learning paradigm that enables various lightweight devices in distributed networks, such as edge devices, to collaboratively generate a machine learning model over a certain number of iterations using their in-house data. Due to the iterative nature of model training, the FL system requires an excessive number of gradient transfer operations among client devices and the server system for the successful generation of ML models. In certain cases, the FL system requires the transfer of a large number of parameters based on the complexity of the model. In reality, model training occurs on lightweight devices with limited communication bandwidth capabilities. When multiple client devices attempt to transfer multiple parameters simultaneously, it puts a significant load on communication channels, leading to communication bottlenecks. This common scenario in FL systems greatly degrades the model generation capabilities and affects the system's performance. To address the issue of communication delays, various methodologies have been proposed in this study. We will be presenting some common strategies in FL systems to achieve communication efficiency, such as data compression, distillation, sparsification, and more. The study will also discuss various aspects of individual methodologies, including their merits and demerits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杉寒完成签到,获得积分10
刚刚
刚刚
1秒前
蔺映秋完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助林慕然2023采纳,获得10
2秒前
快乐枫完成签到,获得积分20
2秒前
2秒前
2秒前
宁静致远完成签到,获得积分10
3秒前
颜雨晴发布了新的文献求助10
3秒前
街上的纸屑完成签到 ,获得积分20
4秒前
4秒前
思源应助万事尚未明晰采纳,获得10
4秒前
ShiShuai发布了新的文献求助10
4秒前
噗咔咔ya发布了新的文献求助10
4秒前
4秒前
5秒前
桐桐应助mumufan采纳,获得10
5秒前
lql关闭了lql文献求助
6秒前
量子星尘发布了新的文献求助10
6秒前
碧海流花完成签到,获得积分10
6秒前
zhaimen完成签到 ,获得积分10
7秒前
在水一方应助好运6连采纳,获得10
7秒前
7秒前
张启娜发布了新的文献求助10
7秒前
耳机分你一只诺完成签到,获得积分10
7秒前
8秒前
jsq发布了新的文献求助10
8秒前
8秒前
8秒前
朝思暮想发布了新的文献求助10
8秒前
星星发布了新的文献求助10
8秒前
cimu95完成签到 ,获得积分10
9秒前
myczh发布了新的文献求助10
9秒前
9秒前
洛水伊南完成签到,获得积分10
10秒前
李健应助研友_VZG64n采纳,获得10
11秒前
莯瑶完成签到,获得积分10
11秒前
深情安青应助Everglow采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472668
求助须知:如何正确求助?哪些是违规求助? 4574935
关于积分的说明 14349182
捐赠科研通 4502253
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1454993
关于科研通互助平台的介绍 1429237