Segmentation Guided Crossing Dual Decoding Generative Adversarial Network for Synthesizing Contrast-Enhanced Computed Tomography Images

计算机科学 解码方法 人工智能 分割 发电机(电路理论) 转化(遗传学) 对比度(视觉) 图像(数学) 对偶(语法数字) 编码(内存) 计算机视觉 深度学习 模式识别(心理学) 算法 艺术 功率(物理) 生物化学 物理 化学 文学类 量子力学 基因
作者
Yulin Yang,Qingqing Chen,Yinhao Li,Fang Wang,Xian‐Hua Han,Yutaro Iwamoto,Jing Liu,Lanfen Lin,Hongjie Hu,Yen‐Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4737-4750 被引量:8
标识
DOI:10.1109/jbhi.2024.3403199
摘要

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah_junlei完成签到,获得积分10
刚刚
李健应助Cindy采纳,获得10
1秒前
1秒前
2秒前
剑来不来完成签到,获得积分10
4秒前
He完成签到 ,获得积分10
4秒前
施旭佳完成签到,获得积分10
6秒前
12545完成签到,获得积分10
7秒前
8秒前
浮游应助狂犬喵采纳,获得10
8秒前
平淡的井完成签到 ,获得积分10
8秒前
8秒前
8秒前
英姑应助SHASHA采纳,获得10
8秒前
10秒前
10秒前
11秒前
11秒前
淡淡天空关注了科研通微信公众号
12秒前
12秒前
王不留行完成签到,获得积分10
12秒前
13秒前
777发布了新的文献求助10
13秒前
Hello应助阜睿采纳,获得10
14秒前
yeezy123发布了新的文献求助10
14秒前
绝版肉肉发布了新的文献求助30
14秒前
田様应助Genius采纳,获得10
15秒前
15秒前
15秒前
15秒前
飘苒发布了新的文献求助10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
华仔应助721采纳,获得10
17秒前
家夜雪发布了新的文献求助10
18秒前
无花果应助忧心的诗云采纳,获得10
18秒前
zhangwenjie发布了新的文献求助30
21秒前
21秒前
堇妗完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483