Segmentation Guided Crossing Dual Decoding Generative Adversarial Network for Synthesizing Contrast-Enhanced Computed Tomography Images

计算机科学 解码方法 人工智能 分割 发电机(电路理论) 转化(遗传学) 对比度(视觉) 图像(数学) 对偶(语法数字) 编码(内存) 计算机视觉 深度学习 模式识别(心理学) 算法 艺术 功率(物理) 生物化学 物理 化学 文学类 量子力学 基因
作者
Yulin Yang,Qingqing Chen,Yinhao Li,Fang Wang,Xian‐Hua Han,Yutaro Iwamoto,Jing Liu,Lanfen Lin,Hongjie Hu,Yen‐Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4737-4750 被引量:1
标识
DOI:10.1109/jbhi.2024.3403199
摘要

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhengxinyang完成签到,获得积分10
1秒前
乐乐应助慕你你你你你采纳,获得10
1秒前
SciGPT应助山青采纳,获得10
1秒前
liaodongjun应助眼睛大天抒采纳,获得10
1秒前
如意书包关注了科研通微信公众号
2秒前
2秒前
TiuTiu完成签到 ,获得积分10
2秒前
火星上的绿蕊完成签到,获得积分10
2秒前
2秒前
刘小源发布了新的文献求助20
2秒前
杨晓毅发布了新的文献求助10
3秒前
脑洞疼应助义气的海瑶采纳,获得10
3秒前
斯文败类应助火龙果采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
淀粉肠发布了新的文献求助10
5秒前
Alan发布了新的文献求助10
6秒前
6秒前
张张张完成签到 ,获得积分10
7秒前
TiuTiu关注了科研通微信公众号
7秒前
纯真书兰完成签到,获得积分10
8秒前
严昌发布了新的文献求助10
8秒前
DD完成签到,获得积分10
8秒前
ChengxinXie完成签到,获得积分20
8秒前
Hannah发布了新的文献求助10
8秒前
lss发布了新的文献求助10
9秒前
万能图书馆应助策略采纳,获得10
9秒前
陆仓颉完成签到,获得积分10
10秒前
花生发布了新的文献求助10
10秒前
今后应助缓慢修杰采纳,获得10
10秒前
小二郎应助知了采纳,获得10
10秒前
富贵儿发布了新的文献求助10
11秒前
11秒前
tyler2000完成签到,获得积分10
12秒前
shan完成签到,获得积分10
12秒前
乐乐应助xiaomili采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620