Segmentation Guided Crossing Dual Decoding Generative Adversarial Network for Synthesizing Contrast-Enhanced Computed Tomography Images

计算机科学 解码方法 人工智能 分割 发电机(电路理论) 转化(遗传学) 对比度(视觉) 图像(数学) 对偶(语法数字) 编码(内存) 计算机视觉 深度学习 模式识别(心理学) 算法 艺术 功率(物理) 生物化学 物理 化学 文学类 量子力学 基因
作者
Yulin Yang,Qingqing Chen,Yinhao Li,Fang Wang,Xian‐Hua Han,Yutaro Iwamoto,Jing Liu,Lanfen Lin,Hongjie Hu,Yen‐Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4737-4750
标识
DOI:10.1109/jbhi.2024.3403199
摘要

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宝贝完成签到 ,获得积分10
刚刚
芹菜完成签到,获得积分10
刚刚
刚刚
刻苦的亦凝完成签到,获得积分10
刚刚
1秒前
星辰大海应助hgl采纳,获得10
1秒前
猩猩发布了新的文献求助10
1秒前
你不刷牙发布了新的文献求助10
3秒前
4秒前
幸福的罡发布了新的文献求助10
5秒前
kkk完成签到 ,获得积分10
5秒前
5秒前
来来来完成签到,获得积分10
8秒前
朴素访琴完成签到 ,获得积分10
9秒前
小巫见大巫完成签到,获得积分10
10秒前
10秒前
干净翠桃发布了新的文献求助10
11秒前
11秒前
faye发布了新的文献求助20
11秒前
13秒前
手帕很忙完成签到,获得积分10
14秒前
15秒前
小明发布了新的文献求助20
15秒前
Lucas应助linzhuo采纳,获得10
16秒前
赘婿应助yg采纳,获得10
18秒前
orixero应助段辉采纳,获得10
19秒前
钇铯完成签到,获得积分10
19秒前
何处西风无酒旗完成签到,获得积分10
19秒前
哦啦啦完成签到,获得积分10
20秒前
21秒前
____(fg)完成签到 ,获得积分10
21秒前
LLL完成签到 ,获得积分10
21秒前
搜集达人应助心想事陈采纳,获得10
21秒前
芒果味猕猴桃完成签到,获得积分10
22秒前
万能图书馆应助vivianzhang采纳,获得10
23秒前
哦啦啦发布了新的文献求助10
23秒前
24秒前
传奇3应助一头傻元芳采纳,获得10
24秒前
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458