Segmentation Guided Crossing Dual Decoding Generative Adversarial Network for Synthesizing Contrast-Enhanced Computed Tomography Images

计算机科学 解码方法 人工智能 分割 发电机(电路理论) 转化(遗传学) 对比度(视觉) 图像(数学) 对偶(语法数字) 编码(内存) 计算机视觉 深度学习 模式识别(心理学) 算法 艺术 功率(物理) 生物化学 物理 化学 文学类 量子力学 基因
作者
Yulin Yang,Qingqing Chen,Yinhao Li,Fang Wang,Xian‐Hua Han,Yutaro Iwamoto,Jing Liu,Lanfen Lin,Hongjie Hu,Yen‐Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4737-4750 被引量:8
标识
DOI:10.1109/jbhi.2024.3403199
摘要

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会会发布了新的文献求助10
1秒前
BINGBING1230发布了新的文献求助10
1秒前
淡然的青旋完成签到 ,获得积分10
1秒前
yaoyh_gc发布了新的文献求助10
2秒前
layla完成签到 ,获得积分10
2秒前
CodeCraft应助barry采纳,获得10
3秒前
3秒前
乐乐应助王晨露采纳,获得10
4秒前
科目三应助空空大师采纳,获得10
4秒前
guo驳回了Orange应助
4秒前
全明星阿杜完成签到,获得积分10
4秒前
5秒前
麦麦完成签到,获得积分10
5秒前
6秒前
Criminology34应助shandianluwei采纳,获得10
6秒前
赘婿应助shandianluwei采纳,获得30
6秒前
缓慢千易完成签到 ,获得积分10
7秒前
8秒前
8秒前
tzl发布了新的文献求助10
8秒前
苏卿应助yaoyaoya采纳,获得10
9秒前
852应助一个小柠檬采纳,获得10
10秒前
10秒前
10秒前
mauve完成签到 ,获得积分10
11秒前
12秒前
yannick发布了新的文献求助10
12秒前
13秒前
Zhang发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
汉堡包应助虚心焦采纳,获得10
14秒前
14秒前
123完成签到,获得积分10
14秒前
林莹完成签到,获得积分10
15秒前
15秒前
田様应助单纯的柚子采纳,获得10
16秒前
WBTT发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308126
求助须知:如何正确求助?哪些是违规求助? 4453339
关于积分的说明 13857031
捐赠科研通 4341040
什么是DOI,文献DOI怎么找? 2383601
邀请新用户注册赠送积分活动 1378277
关于科研通互助平台的介绍 1346269