Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316 被引量:2
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会统计的科学家不是好画家完成签到,获得积分10
1秒前
1秒前
池番完成签到,获得积分20
2秒前
2秒前
浮游应助捏捏捏采纳,获得10
2秒前
4秒前
5秒前
bdJ发布了新的文献求助10
5秒前
zhzh0618完成签到,获得积分10
5秒前
浮游应助陌路采纳,获得10
5秒前
嗯嗯完成签到,获得积分10
6秒前
wang完成签到 ,获得积分10
7秒前
池番发布了新的文献求助10
7秒前
kai发布了新的文献求助20
8秒前
Orange应助benben采纳,获得10
9秒前
9秒前
领导范儿应助阔达碧空采纳,获得10
9秒前
开庆完成签到,获得积分10
10秒前
Amelia发布了新的文献求助10
10秒前
哈基米德应助宗剑采纳,获得20
10秒前
虚心的冷松完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
开朗寇发布了新的文献求助10
12秒前
12秒前
科研通AI5应助Hbobo采纳,获得10
13秒前
希望天下0贩的0应助Barry采纳,获得10
13秒前
13秒前
14秒前
甜蜜的白风完成签到,获得积分10
15秒前
神勇难胜发布了新的文献求助10
15秒前
15秒前
AN完成签到,获得积分10
16秒前
16秒前
呼了个呼完成签到,获得积分10
17秒前
lbc完成签到,获得积分10
17秒前
脑洞疼应助钉大帅采纳,获得10
18秒前
湘湘发布了新的文献求助10
18秒前
铁头霸霸完成签到,获得积分10
18秒前
apathy发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164