亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安澜完成签到,获得积分10
1秒前
Furina应助zxt采纳,获得10
3秒前
4秒前
zxt完成签到,获得积分10
21秒前
28秒前
兔兔兔应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
husi发布了新的文献求助10
32秒前
英姑应助有魅力的吐司采纳,获得10
33秒前
大意的晓亦完成签到 ,获得积分10
40秒前
51秒前
52秒前
56秒前
shi发布了新的文献求助10
57秒前
husi关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
Alimove发布了新的文献求助10
1分钟前
弧光完成签到 ,获得积分0
1分钟前
XNDDY完成签到,获得积分10
1分钟前
爆米花应助JING采纳,获得10
1分钟前
可一可再完成签到 ,获得积分10
1分钟前
AdoreU完成签到,获得积分10
2分钟前
2分钟前
ageqeqh发布了新的文献求助30
2分钟前
小星在努力发布了新的文献求助200
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
英俊的铭应助shi采纳,获得10
2分钟前
2分钟前
李爱国应助花花采纳,获得10
3分钟前
3分钟前
3分钟前
JING发布了新的文献求助10
3分钟前
3分钟前
zzl完成签到 ,获得积分10
3分钟前
Cupid发布了新的文献求助30
3分钟前
花花发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540429
求助须知:如何正确求助?哪些是违规求助? 3974335
关于积分的说明 12310400
捐赠科研通 3641421
什么是DOI,文献DOI怎么找? 2005145
邀请新用户注册赠送积分活动 1040521
科研通“疑难数据库(出版商)”最低求助积分说明 929767