清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316 被引量:2
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼小丸子完成签到 ,获得积分10
刚刚
端庄亦巧完成签到 ,获得积分10
4秒前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
尘远知山静完成签到 ,获得积分10
1分钟前
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
诚心的凛发布了新的文献求助10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
2分钟前
要减肥火车完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
sunialnd应助科研通管家采纳,获得20
3分钟前
lalalapa666发布了新的文献求助10
3分钟前
李木禾完成签到 ,获得积分10
3分钟前
yll发布了新的文献求助10
4分钟前
摸鱼主编magazine完成签到,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分0
4分钟前
如歌完成签到,获得积分10
5分钟前
sunialnd应助科研通管家采纳,获得20
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
master-f完成签到 ,获得积分10
5分钟前
端庄半凡完成签到 ,获得积分0
5分钟前
何为完成签到 ,获得积分0
5分钟前
小树叶完成签到 ,获得积分10
5分钟前
misa完成签到 ,获得积分10
6分钟前
哆啦十七应助Wei采纳,获得10
6分钟前
nano完成签到 ,获得积分10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
sunialnd应助科研通管家采纳,获得20
7分钟前
科研小白书hz完成签到 ,获得积分10
7分钟前
松松完成签到 ,获得积分0
7分钟前
fox完成签到 ,获得积分10
8分钟前
as完成签到 ,获得积分10
8分钟前
sunialnd应助科研通管家采纳,获得30
9分钟前
heher完成签到 ,获得积分10
9分钟前
zzhui完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5367991
求助须知:如何正确求助?哪些是违规求助? 4495993
关于积分的说明 13996504
捐赠科研通 4401019
什么是DOI,文献DOI怎么找? 2417571
邀请新用户注册赠送积分活动 1410305
关于科研通互助平台的介绍 1385947