Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316 被引量:2
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcd_1067完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小包应助科研通管家采纳,获得10
刚刚
彩色的大碗完成签到,获得积分10
1秒前
无心的柚子应助科研通管家采纳,获得100
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得20
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
小包应助科研通管家采纳,获得10
1秒前
amberzyc应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
哆啦十七应助ahaha采纳,获得10
2秒前
哆啦十七应助ahaha采纳,获得10
2秒前
辉辉完成签到,获得积分10
2秒前
2秒前
肥肉草发布了新的文献求助10
2秒前
点金石完成签到,获得积分10
2秒前
2秒前
2秒前
开朗大地完成签到,获得积分10
3秒前
Wjh123456完成签到,获得积分10
3秒前
Mark完成签到,获得积分10
3秒前
Adam完成签到,获得积分10
6秒前
Maisie发布了新的文献求助10
6秒前
牛马完成签到,获得积分10
7秒前
武元彤发布了新的文献求助10
7秒前
853225598完成签到,获得积分10
7秒前
8秒前
WXY完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337004
求助须知:如何正确求助?哪些是违规求助? 4474294
关于积分的说明 13923554
捐赠科研通 4369116
什么是DOI,文献DOI怎么找? 2400580
邀请新用户注册赠送积分活动 1393641
关于科研通互助平台的介绍 1365542