亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316 被引量:2
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
25秒前
单纯凡雁发布了新的文献求助10
27秒前
单纯凡雁完成签到,获得积分20
38秒前
47秒前
sskaze完成签到 ,获得积分10
48秒前
lingzhiyi发布了新的文献求助10
53秒前
lingzhiyi完成签到,获得积分10
1分钟前
无花果应助raki采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
daomaihu完成签到,获得积分10
1分钟前
1分钟前
persi完成签到 ,获得积分10
2分钟前
zydaphne完成签到 ,获得积分10
2分钟前
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
2分钟前
yue发布了新的文献求助10
2分钟前
actor2006完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
peter发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助peter采纳,获得10
3分钟前
在水一方应助yue采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
咸鱼完成签到 ,获得积分10
3分钟前
yue完成签到,获得积分10
3分钟前
万能图书馆应助咸鱼采纳,获得10
3分钟前
呜呼完成签到,获得积分10
4分钟前
桐桐应助加湿器采纳,获得10
4分钟前
4分钟前
夏佳泽发布了新的文献求助10
4分钟前
天雨流芳完成签到 ,获得积分10
4分钟前
Jasper应助夏佳泽采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323925
求助须知:如何正确求助?哪些是违规求助? 4465024
关于积分的说明 13893967
捐赠科研通 4356721
什么是DOI,文献DOI怎么找? 2392995
邀请新用户注册赠送积分活动 1386535
关于科研通互助平台的介绍 1356693