已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 结构工程 组合数学 工程类 语言学 哲学
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316 被引量:2
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰色与青发布了新的文献求助10
3秒前
liu完成签到,获得积分10
3秒前
3秒前
Donut发布了新的文献求助10
5秒前
王小磊完成签到,获得积分10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
8秒前
9秒前
9秒前
9秒前
9秒前
董可以完成签到,获得积分10
10秒前
10秒前
上官若男应助难过冰淇淋采纳,获得30
13秒前
13秒前
lilyy发布了新的文献求助10
14秒前
yucj发布了新的文献求助10
15秒前
bju发布了新的文献求助30
15秒前
ooo发布了新的文献求助10
16秒前
16秒前
liu发布了新的文献求助10
17秒前
太阳雨完成签到,获得积分10
19秒前
cz222完成签到 ,获得积分10
19秒前
19秒前
莱恩完成签到 ,获得积分10
19秒前
22秒前
xiaopan9083发布了新的文献求助10
22秒前
嘉心糖完成签到,获得积分0
25秒前
lilyy完成签到,获得积分10
27秒前
27秒前
28秒前
英俊的铭应助kk采纳,获得10
29秒前
所所应助yemuan采纳,获得10
31秒前
ccm应助xiaopan9083采纳,获得10
32秒前
33秒前
小杜完成签到 ,获得积分10
33秒前
hunker发布了新的文献求助10
33秒前
SY1005完成签到 ,获得积分10
33秒前
limuzi827完成签到 ,获得积分10
34秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384903
求助须知:如何正确求助?哪些是违规求助? 4507675
关于积分的说明 14028732
捐赠科研通 4417398
什么是DOI,文献DOI怎么找? 2426458
邀请新用户注册赠送积分活动 1419209
关于科研通互助平台的介绍 1397553