亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction

计算机科学 卷积神经网络 自编码 图形 特征学习 节点(物理) 人工智能 路径(计算) 理论计算机科学 特征(语言学) 深度学习 拓扑(电路) 数学 计算机网络 语言学 哲学 结构工程 组合数学 工程类
作者
Ping Xuan,Xiuju Wang,Hui Cui,Xiangfeng Meng,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4306-4316
标识
DOI:10.1109/jbhi.2024.3397003
摘要

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category- wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
良辰应助科研通管家采纳,获得10
32秒前
36秒前
甜蜜发带完成签到 ,获得积分10
56秒前
1分钟前
执着夏山发布了新的文献求助10
1分钟前
1分钟前
一墨完成签到,获得积分10
1分钟前
1分钟前
清爽夜雪完成签到,获得积分10
1分钟前
从容栾发布了新的文献求助10
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
无花果应助Demi_Ming采纳,获得10
2分钟前
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
良辰应助科研通管家采纳,获得10
2分钟前
2分钟前
Demi_Ming发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
执着夏山发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
甜梨完成签到,获得积分10
4分钟前
4分钟前
5分钟前
俭朴的大有完成签到,获得积分10
5分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
5分钟前
执着夏山发布了新的文献求助100
5分钟前
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
Z小姐完成签到 ,获得积分10
6分钟前
梨梨lilili完成签到,获得积分20
6分钟前
JamesPei应助cacaldon采纳,获得10
6分钟前
研友_VZG7GZ应助梨梨lilili采纳,获得30
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527