A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助专注的傲白采纳,获得10
2秒前
dery发布了新的文献求助10
2秒前
easymoney发布了新的文献求助10
3秒前
wnag发布了新的文献求助10
4秒前
LYU完成签到,获得积分10
7秒前
何钦俊完成签到 ,获得积分10
7秒前
7秒前
爆米花应助gaoyue高月采纳,获得10
7秒前
善学以致用应助yjt采纳,获得10
7秒前
9秒前
我是老大应助羊洋洋采纳,获得10
9秒前
9秒前
Lucas应助Jam采纳,获得10
11秒前
蛙桑发布了新的文献求助10
12秒前
12秒前
hao发布了新的文献求助10
13秒前
焱焱不忘完成签到,获得积分10
13秒前
15秒前
15秒前
pfangjin完成签到 ,获得积分10
16秒前
18秒前
18秒前
18秒前
18秒前
19秒前
ovoclive发布了新的文献求助10
19秒前
20秒前
meilongyong发布了新的文献求助10
21秒前
Zzz完成签到,获得积分10
21秒前
luwei0618完成签到 ,获得积分10
22秒前
22秒前
玄鸟纸鸢完成签到,获得积分10
23秒前
kuka007发布了新的文献求助10
23秒前
wyuxilong完成签到,获得积分10
24秒前
充电宝应助过时的映安采纳,获得10
24秒前
思源应助阿瓦达索命采纳,获得10
24秒前
25秒前
雪梨冰粥完成签到,获得积分10
25秒前
27秒前
羊洋洋发布了新的文献求助10
27秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214006
求助须知:如何正确求助?哪些是违规求助? 2862659
关于积分的说明 8134955
捐赠科研通 2528960
什么是DOI,文献DOI怎么找? 1363072
科研通“疑难数据库(出版商)”最低求助积分说明 643752
邀请新用户注册赠送积分活动 616184