A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊001完成签到 ,获得积分10
1秒前
11完成签到,获得积分10
1秒前
1秒前
cyn完成签到,获得积分10
1秒前
标致无血完成签到 ,获得积分10
1秒前
猪八戒完成签到,获得积分10
1秒前
2秒前
cat发布了新的文献求助20
3秒前
4秒前
5秒前
w1发布了新的文献求助10
5秒前
花开四海发布了新的文献求助10
6秒前
猪八戒发布了新的文献求助10
6秒前
8秒前
9秒前
9秒前
自由竺发布了新的文献求助20
10秒前
小花完成签到,获得积分20
10秒前
lily发布了新的文献求助10
10秒前
yourbigdaddy完成签到 ,获得积分10
11秒前
HanhanZheng完成签到,获得积分10
13秒前
内向台灯完成签到,获得积分10
13秒前
早早发布了新的文献求助10
13秒前
yc发布了新的文献求助10
14秒前
陈修锋发布了新的文献求助10
14秒前
sheep完成签到,获得积分10
14秒前
科目三应助Akihiiiii采纳,获得10
14秒前
曾经以筠完成签到,获得积分20
14秒前
qq完成签到 ,获得积分10
14秒前
15秒前
insane发布了新的文献求助10
15秒前
yyds给张景赛的求助进行了留言
17秒前
17秒前
刘强发布了新的文献求助10
18秒前
童77完成签到 ,获得积分10
18秒前
起司猫完成签到 ,获得积分10
19秒前
领导范儿应助Tao2023采纳,获得10
20秒前
大模型应助中国大陆采纳,获得10
20秒前
胡聪明完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949