已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助lyx采纳,获得10
1秒前
1秒前
1秒前
4秒前
4秒前
田梦瑶完成签到,获得积分10
5秒前
xy发布了新的文献求助10
6秒前
优秀的莞发布了新的文献求助10
7秒前
9秒前
大方的依霜完成签到,获得积分10
9秒前
淡定访枫完成签到,获得积分20
10秒前
11秒前
Uu完成签到 ,获得积分10
12秒前
NexusExplorer应助自然的乌龟采纳,获得10
13秒前
14秒前
于雷是我发布了新的文献求助10
17秒前
优秀的莞完成签到,获得积分10
17秒前
18秒前
20秒前
蔡小娜完成签到,获得积分20
22秒前
22秒前
WMR发布了新的文献求助10
23秒前
23秒前
蔡小娜发布了新的文献求助10
26秒前
27秒前
28秒前
叽里呱啦完成签到 ,获得积分10
28秒前
ZOE应助clientprogram采纳,获得30
29秒前
29秒前
浮游应助paulmichael采纳,获得10
30秒前
芝士奶酪完成签到 ,获得积分10
30秒前
kimi发布了新的文献求助10
32秒前
Xieyusen发布了新的文献求助10
34秒前
ybheart发布了新的文献求助10
34秒前
左耳钉应助火羊宝采纳,获得10
35秒前
35秒前
kaili完成签到 ,获得积分10
41秒前
欣喜惜海完成签到 ,获得积分10
41秒前
42秒前
Echo完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539751
关于积分的说明 14170500
捐赠科研通 4457568
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412983