亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
ceeray23应助科研通管家采纳,获得10
14秒前
19秒前
22秒前
Chris完成签到 ,获得积分0
26秒前
星启完成签到 ,获得积分10
26秒前
01完成签到 ,获得积分10
29秒前
小橘子吃傻子完成签到,获得积分10
34秒前
34秒前
36秒前
lucky发布了新的文献求助10
39秒前
39秒前
山山完成签到,获得积分20
41秒前
山山发布了新的文献求助10
45秒前
53秒前
苏苏发布了新的文献求助10
1分钟前
激情的代曼完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
爆米花应助小智采纳,获得10
1分钟前
1分钟前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小龙完成签到,获得积分10
1分钟前
斯文败类应助科研猫头鹰采纳,获得10
1分钟前
小智发布了新的文献求助10
1分钟前
nxy完成签到 ,获得积分10
1分钟前
Owen应助EaRnn采纳,获得10
1分钟前
玫瑰遇上奶油完成签到 ,获得积分10
1分钟前
赵雨欣完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小巧尔曼完成签到,获得积分10
1分钟前
1分钟前
EaRnn发布了新的文献求助10
1分钟前
chenzheng发布了新的文献求助10
1分钟前
可爱的函函应助Karma采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578