A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
满意白卉完成签到 ,获得积分10
1秒前
u9227发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
YXHTCM发布了新的文献求助10
5秒前
455完成签到,获得积分10
6秒前
6秒前
小鱼完成签到 ,获得积分10
9秒前
慕青应助菠萝披萨采纳,获得10
10秒前
九思发布了新的文献求助10
11秒前
林牧完成签到,获得积分10
13秒前
15秒前
大帅哥发布了新的文献求助10
19秒前
大个应助优美的南烟采纳,获得10
19秒前
spzdss发布了新的文献求助150
19秒前
懵懂的曼寒完成签到,获得积分10
23秒前
23秒前
无花果应助u9227采纳,获得10
23秒前
24秒前
黎明发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
浮游应助刘丹丹采纳,获得10
26秒前
Helio发布了新的文献求助10
29秒前
lzl17o8发布了新的文献求助10
29秒前
33秒前
霸气的半烟完成签到,获得积分20
33秒前
fisker完成签到,获得积分10
35秒前
36秒前
fzx完成签到,获得积分10
36秒前
lll发布了新的文献求助10
37秒前
40秒前
40秒前
黎明完成签到,获得积分10
41秒前
fisker发布了新的文献求助10
41秒前
自觉的枕头完成签到,获得积分10
41秒前
42秒前
43秒前
烟花应助大帅哥采纳,获得10
43秒前
44秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986