A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云游归尘完成签到 ,获得积分10
2秒前
帆帆牛完成签到,获得积分10
2秒前
2秒前
阿峤发布了新的文献求助10
2秒前
Liuying2809发布了新的文献求助10
4秒前
科目三应助BBrian采纳,获得10
5秒前
善良的樱发布了新的文献求助10
6秒前
小乐发布了新的文献求助10
6秒前
7秒前
leeky完成签到,获得积分10
7秒前
9秒前
yb完成签到,获得积分10
9秒前
xiaole完成签到,获得积分10
9秒前
TEO应助Liu采纳,获得20
10秒前
梨炒栗子完成签到,获得积分10
10秒前
我爱科研科研也爱我完成签到,获得积分10
10秒前
Jasper应助西子阳采纳,获得10
11秒前
万物安生发布了新的文献求助10
11秒前
爆米花应助Mzb采纳,获得10
11秒前
斯文的斩完成签到,获得积分10
11秒前
wgt完成签到,获得积分10
12秒前
hhh完成签到,获得积分10
12秒前
zhousiyu发布了新的文献求助10
13秒前
13秒前
wgt发布了新的文献求助30
15秒前
xn201120驳回了TEO应助
16秒前
17秒前
19秒前
沉默的文完成签到,获得积分10
19秒前
gjl发布了新的文献求助20
20秒前
传奇3应助西子阳采纳,获得10
21秒前
奶糖爱果冻完成签到 ,获得积分10
22秒前
Ava应助布偶猫采纳,获得10
23秒前
23秒前
好运连连发布了新的文献求助10
24秒前
24秒前
25秒前
善良的樱完成签到 ,获得积分20
25秒前
空港应助兀那狗子别跑采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055