A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanatic完成签到,获得积分10
1秒前
3秒前
完美世界应助孙淑婷采纳,获得10
3秒前
星辰大海应助聪明凌雪采纳,获得20
3秒前
wangyue2024完成签到,获得积分10
3秒前
小二郎应助棠棠采纳,获得10
4秒前
南_完成签到,获得积分10
5秒前
无极微光应助Wefaily采纳,获得20
6秒前
吃吃吃发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
木木枭发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
橘颂完成签到,获得积分10
10秒前
云辞发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
木木枭完成签到,获得积分10
13秒前
浮游应助震九洲采纳,获得10
13秒前
工藤新一发布了新的文献求助10
14秒前
lljjllcool发布了新的文献求助10
15秒前
Anna发布了新的文献求助10
16秒前
丘比特应助yi0采纳,获得20
16秒前
发发发布了新的文献求助20
16秒前
orixero应助BANGZHU采纳,获得30
16秒前
16秒前
大模型应助封夕采纳,获得10
16秒前
17秒前
秦奎完成签到,获得积分10
18秒前
愉快砖家完成签到,获得积分10
20秒前
玄音完成签到,获得积分10
21秒前
天子山村的希望完成签到 ,获得积分10
21秒前
李健应助mww采纳,获得10
21秒前
欢呼的白玉完成签到 ,获得积分10
21秒前
Yanglk完成签到,获得积分10
21秒前
风中钥匙完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434607
求助须知:如何正确求助?哪些是违规求助? 4546930
关于积分的说明 14204919
捐赠科研通 4466869
什么是DOI,文献DOI怎么找? 2448346
邀请新用户注册赠送积分活动 1439195
关于科研通互助平台的介绍 1416030