A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
helloworld完成签到,获得积分10
1秒前
海洋完成签到,获得积分10
1秒前
Hina完成签到,获得积分10
2秒前
ZH完成签到,获得积分10
5秒前
yyds完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
唯梦完成签到 ,获得积分10
9秒前
詹姆斯哈登完成签到,获得积分10
12秒前
李健应助名字不好起采纳,获得10
14秒前
万历完成签到,获得积分10
14秒前
14秒前
林卷卷完成签到,获得积分10
15秒前
大葱鸭发布了新的文献求助10
17秒前
18秒前
李健应助南山无梅落采纳,获得10
18秒前
22秒前
赘婿应助大橙子采纳,获得10
24秒前
31秒前
我是大学霸完成签到,获得积分10
32秒前
随风完成签到,获得积分0
32秒前
yi完成签到 ,获得积分10
33秒前
lin完成签到,获得积分10
34秒前
huahua完成签到 ,获得积分10
34秒前
大橙子发布了新的文献求助10
37秒前
小黑完成签到,获得积分10
40秒前
ZY完成签到 ,获得积分10
43秒前
阿士大夫完成签到,获得积分0
43秒前
chai完成签到,获得积分10
43秒前
GUO完成签到,获得积分10
44秒前
111完成签到 ,获得积分10
45秒前
Llllll发布了新的文献求助200
46秒前
天下无马完成签到 ,获得积分10
47秒前
大葱鸭完成签到,获得积分10
47秒前
ahh完成签到 ,获得积分10
49秒前
辛勤安梦完成签到,获得积分10
50秒前
Akjan完成签到,获得积分10
53秒前
查查make完成签到,获得积分10
57秒前
Jasper应助大橙子采纳,获得10
58秒前
GUO发布了新的文献求助30
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022