A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼际,发布了新的文献求助10
刚刚
传奇3应助123采纳,获得10
1秒前
2秒前
2秒前
lyt发布了新的文献求助10
3秒前
yummy弯完成签到 ,获得积分10
4秒前
4秒前
Jasper应助八乙基环辛四烯采纳,获得10
4秒前
bkagyin应助文文采纳,获得30
4秒前
Super莹4589发布了新的文献求助10
6秒前
7秒前
wanci应助billows采纳,获得10
7秒前
开心的凝荷完成签到,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
我是老大应助SHI采纳,获得10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
爱科研的琪琪完成签到,获得积分10
11秒前
勤劳傲安发布了新的文献求助10
11秒前
爱笑的羊青完成签到,获得积分10
11秒前
6a发布了新的文献求助10
12秒前
orixero应助开心的凝荷采纳,获得10
12秒前
xlh完成签到 ,获得积分10
13秒前
wanci应助yyyyy采纳,获得10
14秒前
lll完成签到,获得积分10
14秒前
薯条怎么解决问题完成签到,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科目三应助Zeus采纳,获得30
16秒前
16秒前
GS完成签到,获得积分20
17秒前
CodeCraft应助陶醉的平萱采纳,获得10
17秒前
17秒前
lll发布了新的文献求助10
18秒前
Smurfs发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124074
求助须知:如何正确求助?哪些是违规求助? 4328405
关于积分的说明 13487311
捐赠科研通 4162789
什么是DOI,文献DOI怎么找? 2281804
邀请新用户注册赠送积分活动 1283156
关于科研通互助平台的介绍 1222296