亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
lovehuahua发布了新的文献求助10
10秒前
空白格完成签到 ,获得积分10
11秒前
14秒前
北执完成签到,获得积分10
16秒前
Yikao完成签到 ,获得积分10
16秒前
大胆的碧菡完成签到,获得积分10
17秒前
12345发布了新的文献求助10
19秒前
慕青应助lovehuahua采纳,获得10
26秒前
Akim应助鹤唳采纳,获得10
52秒前
59秒前
鹤唳发布了新的文献求助10
1分钟前
1分钟前
鹤唳完成签到,获得积分10
1分钟前
Gideon完成签到,获得积分10
1分钟前
坦率的金针菇完成签到 ,获得积分10
1分钟前
1分钟前
眯眯眼的雪莲完成签到 ,获得积分10
1分钟前
kendall完成签到 ,获得积分10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
季禹发布了新的文献求助10
1分钟前
freyaaaaa应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
GIA发布了新的文献求助10
1分钟前
小马完成签到,获得积分10
1分钟前
jumbaumba完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
从来都不会放弃zr完成签到,获得积分10
2分钟前
积极废物完成签到 ,获得积分10
2分钟前
Kinkrit完成签到 ,获得积分10
2分钟前
敏敏9813完成签到,获得积分10
2分钟前
卧镁铀钳完成签到 ,获得积分10
2分钟前
阔达凝天完成签到,获得积分10
3分钟前
TiTiMer发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498268
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449353
捐赠科研通 4528276
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465573
关于科研通互助平台的介绍 1438310