A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
follow发布了新的文献求助10
刚刚
zy发布了新的文献求助10
1秒前
ckz发布了新的文献求助10
2秒前
积极松完成签到 ,获得积分10
2秒前
善学以致用应助淡淡的凡采纳,获得10
2秒前
wanci应助老肖采纳,获得10
2秒前
3秒前
杨宝仪发布了新的文献求助10
3秒前
hu发布了新的文献求助10
4秒前
无限的小懒虫完成签到,获得积分10
4秒前
图图超人发布了新的文献求助10
4秒前
lucky完成签到,获得积分10
5秒前
小蓝发布了新的文献求助10
5秒前
华仔应助YNHN采纳,获得10
5秒前
6秒前
科研通AI6应助鱼y采纳,获得10
6秒前
英姑应助笨笨的鬼神采纳,获得10
6秒前
sunny完成签到,获得积分10
7秒前
7秒前
科研通AI6应助smile采纳,获得10
7秒前
科研顺利发布了新的文献求助10
7秒前
toot完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助ccone采纳,获得10
9秒前
orixero应助小章采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
乘风完成签到,获得积分10
10秒前
海棠完成签到 ,获得积分10
11秒前
12秒前
hu完成签到,获得积分10
12秒前
12秒前
小1完成签到,获得积分10
13秒前
镓氧锌钇铀应助yy采纳,获得10
13秒前
13秒前
友好的宛凝完成签到,获得积分10
13秒前
江流儿完成签到,获得积分10
13秒前
英俊的铭应助勤恳醉柳采纳,获得10
14秒前
15秒前
载荷发布了新的文献求助10
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618