A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七日春信发布了新的文献求助10
1秒前
吴子宇发布了新的文献求助10
2秒前
journey完成签到 ,获得积分10
4秒前
7秒前
乖猫要努力应助潇湘雪月采纳,获得10
10秒前
一行发布了新的文献求助10
10秒前
storm完成签到,获得积分10
13秒前
HOPE完成签到,获得积分20
14秒前
Singularity应助Xiaoyang采纳,获得10
16秒前
ding应助快乐一江采纳,获得10
16秒前
17秒前
步一完成签到,获得积分10
18秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
dongjy应助科研通管家采纳,获得150
22秒前
Owen应助科研通管家采纳,获得10
22秒前
fd163c应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
22秒前
愉快的牛氓完成签到 ,获得积分10
24秒前
恋雅颖月应助潇湘雪月采纳,获得10
26秒前
28秒前
传奇3应助热情青亦采纳,获得10
29秒前
CodeCraft应助夕沫采纳,获得10
30秒前
江江发布了新的文献求助10
33秒前
斯文败类应助sirhai采纳,获得10
35秒前
只谈风月完成签到,获得积分10
36秒前
顾矜应助哈哈呵采纳,获得10
37秒前
科研助手6应助风中的南风采纳,获得10
37秒前
小马甲应助呆瓜采纳,获得10
37秒前
38秒前
热情青亦完成签到,获得积分10
38秒前
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174