A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助sommer12345采纳,获得10
刚刚
1秒前
2秒前
2秒前
3秒前
yls123发布了新的文献求助10
3秒前
3秒前
疯狂的冬瓜完成签到,获得积分10
4秒前
UP完成签到,获得积分10
4秒前
明理的沛柔关注了科研通微信公众号
4秒前
asdadad完成签到,获得积分10
4秒前
tt825完成签到,获得积分10
4秒前
fff完成签到,获得积分10
5秒前
派大星完成签到,获得积分10
5秒前
KKKKKKK完成签到 ,获得积分10
7秒前
7秒前
雪白的南晴完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
bc应助loveyourself采纳,获得30
8秒前
烟花应助nav采纳,获得10
8秒前
犹豫语琴发布了新的文献求助10
8秒前
天天发布了新的文献求助10
9秒前
NexusExplorer应助SASA采纳,获得30
9秒前
真洋子哈完成签到,获得积分10
9秒前
流砂完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
丫丫完成签到,获得积分10
12秒前
12秒前
wahaha完成签到,获得积分10
12秒前
Orange应助于彤采纳,获得10
12秒前
13秒前
我爱科研完成签到,获得积分10
13秒前
kiki完成签到,获得积分10
13秒前
852应助BorisY采纳,获得10
14秒前
天真依玉完成签到,获得积分10
14秒前
所所应助饱饱采纳,获得10
14秒前
ymx703114完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002