A novel method for H2S concentration prediction under small sample based on ECA-1DCNN-XGBR

样品(材料) 计算机科学 分析化学(期刊) 材料科学 环境科学 化学 环境化学 色谱法
作者
Jiaxin Yue,Fan Wu,Xue Wang,Peter Feng,Junwei Zhuo,Hao Cui,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20167-20176 被引量:2
标识
DOI:10.1109/jsen.2024.3394556
摘要

Although gas concentration prediction based on deep learning has made significant progress, the accuracy is typically achieved on the basis of a large number of training samples, making it challenging to meet the requirements of real industrial scenarios. Moreover, traditional neural networks often face issues such as insufficient feature extraction or overfitting in the condition of small sample. In this work, a novel detection method that combines one-dimensional convolutional neural network (1DCNN) featuring efficient channel attention (ECA) mechanism with extreme gradient boosting regressor (XGBR) is proposed to address the aforementioned issue, and simultaneously, a high-quality dataset of H 2 S with small sample has also been collected through an automated gas data acquisition system fully operated by a computerized environment. Due to the special ensemble structure and regularization terms, XGBR can resist overfitting under small sample condition. Furthermore, the deep feature extraction capabilities of neural networks, coupled with the characteristic of attention mechanism to focus on key features, empower ECA-1DCNN to efficiently extract features. The experimental results demonstrated that the R 2 of ECA-1DCNN-XGBR reached 0.9999, and a RMSE of 0.584 and an MAE of 0.374 were simultaneously achieved. Meanwhile, compared with traditional machine learning and deep learning models, the proposed method performed best in regression prediction tasks. These results indicate proposed method performs excellently in the prediction of H 2 S gas concentrations under small sample, with high accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的凌雪完成签到,获得积分10
刚刚
申燕婷完成签到 ,获得积分10
刚刚
TianFuAI完成签到,获得积分10
刚刚
白江虎发布了新的文献求助10
5秒前
科钱钱完成签到 ,获得积分10
6秒前
风清扬应助科研通管家采纳,获得10
8秒前
qingmoheng应助科研通管家采纳,获得10
8秒前
风清扬应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研王应助科研通管家采纳,获得10
9秒前
风清扬应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
风清扬应助科研通管家采纳,获得10
9秒前
科研王应助科研通管家采纳,获得10
9秒前
风清扬应助科研通管家采纳,获得10
9秒前
风清扬应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
yeahCZY应助一个小胖子采纳,获得10
12秒前
慕青应助白江虎采纳,获得10
13秒前
柯友卉完成签到,获得积分10
15秒前
一个小胖子完成签到,获得积分10
27秒前
漂亮的秋天完成签到 ,获得积分10
29秒前
tu完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
36秒前
俭朴的芝麻完成签到,获得积分10
38秒前
王昭完成签到 ,获得积分10
40秒前
2316690509完成签到 ,获得积分10
40秒前
嘻嘻不嘻嘻完成签到 ,获得积分10
41秒前
cccc完成签到 ,获得积分10
45秒前
慕何完成签到 ,获得积分10
55秒前
南浔完成签到 ,获得积分10
1分钟前
高高的以山完成签到 ,获得积分10
1分钟前
qqqdewq完成签到,获得积分10
1分钟前
高大厉完成签到 ,获得积分10
1分钟前
1分钟前
自信的高山完成签到,获得积分10
1分钟前
1分钟前
Yael发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539156
求助须知:如何正确求助?哪些是违规求助? 4625957
关于积分的说明 14597178
捐赠科研通 4566766
什么是DOI,文献DOI怎么找? 2503614
邀请新用户注册赠送积分活动 1481546
关于科研通互助平台的介绍 1453063