IncepV3Dense: Deep Ensemble based Average Learning Strategy for identification of Micro-nutrient deficiency in banana crop

鉴定(生物学) 计算机科学 作物 集成学习 营养物 人工智能 农业工程 农学 工程类 植物 生物 生态学
作者
Sudhakar Muthusamy,Swarna Priya Ramu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 73779-73792 被引量:2
标识
DOI:10.1109/access.2024.3405027
摘要

The Nutrition of a crop is very essential for the health conditions during its growth stages and yield. A plant development is dependent on various nutrients absorbed from the natural environment or fertilizer supplements. The shortage or lack of essential nutrients is one of the crucial factors which impacts the overall crop yield. Computer vision based phenomics have become an emerging area in agricultural research. In this part of research work, we propose an image classifier model which is based on ensemble based Convolutional Neural Network(CNN) that can diagnose banana crop's micro-nutrient deficiency with improved accuracy using the leaf images. We selected Six popular deep learning pre-trained models namely VGG-19, InceptionResNetV2, InceptionV3, Xception,DenseNet169 and DenseNet201 and performed the modification of parameters in the top dense layers to experiment with the public available mendeley dataset containing banana crop leaf images with nutrient deficiencies. The diagnostic accuracy along with precision, recall, F1 score and support score was observed. On comparing the classifying accuracy parameters of the six mutated pretrained models, the modified DenseNet169 model attains the highest testing accuracy. The performance analysis was also done using confusion matrices. Finally, we created three binary ensembled models such as Xception+InceptionV3, Dense169+Xception and InceptionV3+Dense169 based on their top performance accuracy scores for the detection of micro nutrient deficiency in banana crop using the concept of averaging strategy. The proposed mutated ensemble based model InceptionV3+Dense169 (IncepV3Dense) attains a validation accuracy of 98.62% and f1 score of 93% for detecting banana crop micro nutrient deficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊完成签到 ,获得积分10
1秒前
大模型应助leimingming采纳,获得10
4秒前
慕青应助这是谁采纳,获得50
5秒前
Tao发布了新的文献求助10
6秒前
7秒前
8秒前
11秒前
小马甲应助意意采纳,获得10
14秒前
可爱的函函应助WYY采纳,获得10
14秒前
莎莎发布了新的文献求助10
15秒前
15秒前
面条发布了新的文献求助10
15秒前
17秒前
等待的鱼完成签到,获得积分10
18秒前
19秒前
20秒前
张涵发布了新的文献求助10
21秒前
坚强的严青完成签到,获得积分20
21秒前
隐形曼青应助铅笔羊采纳,获得10
22秒前
lyly完成签到,获得积分10
23秒前
科目三应助伶俐板栗采纳,获得10
23秒前
强健的梦蕊完成签到 ,获得积分10
24秒前
24秒前
糖心完成签到,获得积分10
25秒前
传奇3应助坚强的严青采纳,获得10
26秒前
学术小天才完成签到 ,获得积分10
26秒前
26秒前
健壮的香蕉完成签到,获得积分10
27秒前
yoyo20012623完成签到,获得积分10
27秒前
28秒前
30秒前
30秒前
Tao完成签到,获得积分10
31秒前
32秒前
35秒前
36秒前
36秒前
36秒前
38秒前
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416935
求助须知:如何正确求助?哪些是违规求助? 3018754
关于积分的说明 8884993
捐赠科研通 2705969
什么是DOI,文献DOI怎么找? 1484010
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074