亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IncepV3Dense: Deep Ensemble based Average Learning Strategy for identification of Micro-nutrient deficiency in banana crop

鉴定(生物学) 计算机科学 作物 集成学习 营养物 人工智能 农业工程 农学 工程类 植物 生物 生态学
作者
Sudhakar Muthusamy,Swarna Priya Ramu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 73779-73792 被引量:2
标识
DOI:10.1109/access.2024.3405027
摘要

The Nutrition of a crop is very essential for the health conditions during its growth stages and yield. A plant development is dependent on various nutrients absorbed from the natural environment or fertilizer supplements. The shortage or lack of essential nutrients is one of the crucial factors which impacts the overall crop yield. Computer vision based phenomics have become an emerging area in agricultural research. In this part of research work, we propose an image classifier model which is based on ensemble based Convolutional Neural Network(CNN) that can diagnose banana crop's micro-nutrient deficiency with improved accuracy using the leaf images. We selected Six popular deep learning pre-trained models namely VGG-19, InceptionResNetV2, InceptionV3, Xception,DenseNet169 and DenseNet201 and performed the modification of parameters in the top dense layers to experiment with the public available mendeley dataset containing banana crop leaf images with nutrient deficiencies. The diagnostic accuracy along with precision, recall, F1 score and support score was observed. On comparing the classifying accuracy parameters of the six mutated pretrained models, the modified DenseNet169 model attains the highest testing accuracy. The performance analysis was also done using confusion matrices. Finally, we created three binary ensembled models such as Xception+InceptionV3, Dense169+Xception and InceptionV3+Dense169 based on their top performance accuracy scores for the detection of micro nutrient deficiency in banana crop using the concept of averaging strategy. The proposed mutated ensemble based model InceptionV3+Dense169 (IncepV3Dense) attains a validation accuracy of 98.62% and f1 score of 93% for detecting banana crop micro nutrient deficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
27秒前
StayGolDay完成签到,获得积分10
37秒前
小巧幼蓉完成签到,获得积分10
38秒前
情怀应助皮卡啾啾鹿采纳,获得10
38秒前
59秒前
森森森发布了新的文献求助10
1分钟前
1分钟前
luo完成签到,获得积分10
1分钟前
1分钟前
复杂真发布了新的文献求助30
1分钟前
luo发布了新的文献求助10
1分钟前
1分钟前
酷波er应助森森森采纳,获得10
1分钟前
十三州府发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
kbcbwb2002完成签到,获得积分10
2分钟前
小巧幼蓉发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
CQ发布了新的文献求助10
2分钟前
2分钟前
CQ完成签到,获得积分10
2分钟前
桐桐应助老迟到的微笑采纳,获得30
2分钟前
2分钟前
领导范儿应助杨惠子采纳,获得10
3分钟前
十三州府完成签到,获得积分10
3分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
杨惠子发布了新的文献求助10
3分钟前
3分钟前
3分钟前
iris发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
复杂真发布了新的文献求助10
3分钟前
Hyde完成签到,获得积分10
3分钟前
杨惠子完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926311
求助须知:如何正确求助?哪些是违规求助? 4196187
关于积分的说明 13032081
捐赠科研通 3968181
什么是DOI,文献DOI怎么找? 2174870
邀请新用户注册赠送积分活动 1192046
关于科研通互助平台的介绍 1102193