亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IncepV3Dense: Deep Ensemble based Average Learning Strategy for identification of Micro-nutrient deficiency in banana crop

鉴定(生物学) 计算机科学 作物 集成学习 营养物 人工智能 农业工程 农学 工程类 植物 生物 生态学
作者
Sudhakar Muthusamy,Swarna Priya Ramu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 73779-73792 被引量:2
标识
DOI:10.1109/access.2024.3405027
摘要

The Nutrition of a crop is very essential for the health conditions during its growth stages and yield. A plant development is dependent on various nutrients absorbed from the natural environment or fertilizer supplements. The shortage or lack of essential nutrients is one of the crucial factors which impacts the overall crop yield. Computer vision based phenomics have become an emerging area in agricultural research. In this part of research work, we propose an image classifier model which is based on ensemble based Convolutional Neural Network(CNN) that can diagnose banana crop's micro-nutrient deficiency with improved accuracy using the leaf images. We selected Six popular deep learning pre-trained models namely VGG-19, InceptionResNetV2, InceptionV3, Xception,DenseNet169 and DenseNet201 and performed the modification of parameters in the top dense layers to experiment with the public available mendeley dataset containing banana crop leaf images with nutrient deficiencies. The diagnostic accuracy along with precision, recall, F1 score and support score was observed. On comparing the classifying accuracy parameters of the six mutated pretrained models, the modified DenseNet169 model attains the highest testing accuracy. The performance analysis was also done using confusion matrices. Finally, we created three binary ensembled models such as Xception+InceptionV3, Dense169+Xception and InceptionV3+Dense169 based on their top performance accuracy scores for the detection of micro nutrient deficiency in banana crop using the concept of averaging strategy. The proposed mutated ensemble based model InceptionV3+Dense169 (IncepV3Dense) attains a validation accuracy of 98.62% and f1 score of 93% for detecting banana crop micro nutrient deficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大男完成签到,获得积分10
15秒前
1分钟前
阳光强炫发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
锦城纯契完成签到 ,获得积分10
1分钟前
HuanChen完成签到 ,获得积分10
2分钟前
阳光强炫关注了科研通微信公众号
2分钟前
否定之否定发布了新的文献求助200
2分钟前
shi hui应助白华苍松采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
慕青应助calmxp采纳,获得10
5分钟前
6分钟前
calmxp发布了新的文献求助10
6分钟前
白华苍松完成签到,获得积分10
6分钟前
7分钟前
sakura发布了新的文献求助10
7分钟前
7分钟前
pinklay完成签到 ,获得积分10
7分钟前
poki完成签到 ,获得积分10
8分钟前
wwee发布了新的文献求助10
8分钟前
天天快乐应助wwee采纳,获得10
8分钟前
小橙子发布了新的文献求助10
8分钟前
sakura完成签到,获得积分10
9分钟前
笔墨留香完成签到,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
ZZZ完成签到,获得积分10
9分钟前
锅架了完成签到 ,获得积分10
10分钟前
10分钟前
大个应助小橙子采纳,获得10
10分钟前
11分钟前
婼汐完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
12分钟前
sdshi发布了新的文献求助10
12分钟前
12分钟前
江洋大盗发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558577
求助须知:如何正确求助?哪些是违规求助? 4643645
关于积分的说明 14671323
捐赠科研通 4584948
什么是DOI,文献DOI怎么找? 2515270
邀请新用户注册赠送积分活动 1489325
关于科研通互助平台的介绍 1460038