Obtaining the effective number of reinforcements progressively inserted and optimized to reduce the strain energy of cantilever plates with a different relationship between height and length

悬臂梁 钢筋 拉伤 材料科学 能量(信号处理) 复合材料 数学 统计 生物 解剖
作者
Eduardo da Rosa Vieira,Daniel Milbrath De Leon,Rogério José Marczak
标识
DOI:10.1177/14644207241255374
摘要

To achieve more efficient structures, research into material properties is important in mechanical designs. The anisotropy of fiber composites is increasingly being exploited. This is particularly true for curved and continuous composites. The position and orientation of the filaments have a major influence on mechanical properties. So, the application of these fibers at specific paths is very important to obtain excellent structures. When developing components for high-performance applications, it is necessary to use optimization methods to find the best reinforcement paths. To achieve high efficiency, it is necessary to reduce the volume of the reinforcements to improve the strength-to-weight ratio. This reduction not only directly reduces the mass, but also decreases manufacturing costs. The present work aims to gradually add reinforcements to carbon fiber-reinforced polymers (CFRPs). It observes the exact number of fibers required to achieve the greatest possible reduction in strain energy. The results prove that the use of more reinforcements than ideal is unnecessary because it increases the volume of reinforcements but doesn’t improve the properties. Optimization is achieved by parameterizing B-splines using sequential linear programming (SLP). Four cases analyzed concern a cantilevered plate. A force is applied to the free edge, causing bending. The boundary conditions are identical, and only the length of the plate changes. The strain is plotted to observe the strain distribution. Then, the results show that adding three to four reinforcements can reduce the strain energy by 92.6% to 98.0% compared to a structure without reinforcements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助xxpph采纳,获得10
1秒前
Ava应助YUYU采纳,获得10
1秒前
亦木完成签到,获得积分10
1秒前
伍迎海完成签到,获得积分10
2秒前
Ziyi_Xu完成签到,获得积分10
3秒前
邓布利多多完成签到,获得积分10
5秒前
啵啵完成签到,获得积分10
6秒前
8秒前
乐观银耳汤完成签到,获得积分10
10秒前
小陈完成签到,获得积分10
10秒前
11秒前
嘻嘻嘻完成签到,获得积分10
11秒前
所所应助可靠盼旋采纳,获得10
11秒前
11秒前
李天天完成签到,获得积分10
13秒前
13秒前
yj91完成签到,获得积分10
13秒前
13秒前
14秒前
雨翮风翎发布了新的文献求助10
15秒前
苏苏完成签到 ,获得积分10
15秒前
15秒前
852应助G1997采纳,获得10
15秒前
ding应助小陈采纳,获得10
16秒前
酷波er应助研友_8yN60L采纳,获得10
16秒前
17秒前
18秒前
dd发布了新的文献求助10
18秒前
xxpph发布了新的文献求助10
18秒前
jiiiawa应助多多采纳,获得10
18秒前
Carol完成签到,获得积分20
18秒前
义气成风发布了新的文献求助10
19秒前
山橘月发布了新的文献求助10
19秒前
Bellala完成签到,获得积分10
20秒前
20秒前
kyut发布了新的文献求助10
20秒前
Hnuy发布了新的文献求助10
21秒前
21秒前
哦啦啦完成签到,获得积分10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664