Development of SiC power module structure by micron-sized Ag-paste sinter joining on both die and heatsink to low-thermal-resistance and superior power cycling reliability

材料科学 模具(集成电路) 散热片 温度循环 热阻 可靠性(半导体) 动力循环 功率(物理) 碳化硅 热的 电源模块 复合材料 电气工程 机械工程 工程类 纳米技术 物理 量子力学 气象学
作者
Chuantong Chen,Aiji Suetake,Fupeng Huo,Dongjin Kim,Zheng Zhang,Ming-Chun Hsieh,Wanli Li,Naoki Wakasugi,Kazutaka Takeshita,Yoshiji Yamaguchi,Yashima Momose,Katsuaki Suganuma
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 10638-10650
标识
DOI:10.1109/tpel.2024.3408798
摘要

In this study, the thermal characteristics and structure reliability during power cycling for the four types of SiC power module fabricated using a SiC-heater chip, direct bonded aluminum (DBA) substrate, and aluminum (Al) heatsink were evaluated. Two die-attach materials, including a Sn-Ag-Cu (SAC 305) solder and an Ag paste sinter, were used to bond the SiC to DBA substrate. Furthermore, three types of substrates bonding layer, including SAC solder and Ag paste sinter, and Si grease, were used to bond the DBA substrate to Al heatsink. The large area bonding between the DBA substrate (30 x 30 mm2) and Al heatsink was achieved. In addition, comparing with the tradition SAC solder-Si grease joint structure, the SiC chip temperature decreased from 265.5 ℃ to 180.4 ℃ and the total thermal resistance of the joint structure decreased from 1.58 K/W to 0.85 K/W for the Ag-Ag sinter joint at the same input power. The heat dissipation improved by 1.86 times. The results were validated and fit well using 3D finite element analysis. The failure time was improved 14.5 times from 2340 cycles to 33926 cycles for the AgAg sinter joint during the power cycling test. This study will help us to create a SiC power device structure that is smaller, thinner, and possesses ultra-low thermal resistance, and high reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极荠发布了新的文献求助10
刚刚
刚刚
调皮翠霜发布了新的文献求助10
刚刚
遥远的尧应助温酒叙人生采纳,获得10
2秒前
善学以致用应助weijie采纳,获得10
3秒前
3秒前
Lobectomy完成签到,获得积分10
4秒前
4秒前
聪明的觅风完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
999完成签到,获得积分10
9秒前
9秒前
张中阳发布了新的文献求助10
10秒前
坦率天德发布了新的文献求助10
10秒前
一天三个蛋完成签到,获得积分10
10秒前
材料化学左亚坤完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
Progie应助LMFY采纳,获得10
12秒前
12秒前
12秒前
12秒前
明亮的海冬完成签到,获得积分10
12秒前
乐观寒珊发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
滴滴迪迪发布了新的文献求助10
16秒前
16秒前
hsing发布了新的文献求助10
18秒前
专注芹发布了新的文献求助10
18秒前
mei完成签到 ,获得积分10
18秒前
青葱发布了新的文献求助50
19秒前
Orange应助完美梨愁采纳,获得10
19秒前
20秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943