Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering

拉曼散射 化学 散射 拉曼光谱 纳米技术 化学物理 分子 机制(生物学) 材料科学 光学 物理 量子力学 有机化学
作者
Shuo Wang,Youchao Wei,Siyang Zheng,Zhaofu Zhang,Xi Tang,Liangbo Liang,Zhigang Zang,Qingkai Qian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (24): 9917-9926 被引量:2
标识
DOI:10.1021/acs.analchem.4c01051
摘要

Two-dimensional (2D) materials have been extensively implemented as surface-enhanced Raman scattering (SERS) substrates, enabling trace-molecule detection for broad applications. However, the accurate understanding of the mechanism remains elusive because most theoretical explanations are still phenomenological or qualitative based on simplified models and rough assumptions. To advance the development of 2D material-assisted SERS, it is vital to attain a comprehensive understanding of the enhancement mechanism and a quantitative assessment of the enhancement performance. Here, the microscopic chemical mechanism of 2D material-assisted SERS is quantitatively investigated. The frequency-dependent Raman scattering cross sections suggest that the 2D materials' SERS performance is strongly dependent on the excitation wavelengths and the molecule types. By analysis of the microscopic Raman scattering processes, the comprehensive contributions of SERS can be revealed. Beyond the widely postulated charge transfer mechanisms, the quantitative results conclusively demonstrate that the resonant transitions within 2D materials alone are also capable of enhancing the molecular Raman scattering through the diffusive scattering of phonons. Furthermore, all of these scattering routines will interfere with each other and determine the final SERS performance. Our results not only provide a complete picture of the SERS mechanisms but also demonstrate a systematic and quantitative approach to theoretically understand, predict, and promote the 2D materials SERS toward analytical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Draven发布了新的文献求助10
刚刚
2秒前
3秒前
6秒前
7秒前
dqh发布了新的文献求助10
8秒前
科研通AI5应助大大小小采纳,获得10
8秒前
Ava应助狄百招采纳,获得30
8秒前
9秒前
9秒前
CodeCraft应助smiles采纳,获得10
10秒前
victor完成签到,获得积分10
10秒前
10秒前
song完成签到,获得积分10
11秒前
噼里啪啦发布了新的文献求助10
11秒前
y6wj发布了新的文献求助10
12秒前
一二三发布了新的文献求助10
13秒前
wsy关闭了wsy文献求助
14秒前
希望天下0贩的0应助dqh采纳,获得10
14秒前
renhaiyan发布了新的文献求助10
15秒前
AlinaLee应助12采纳,获得10
16秒前
cc完成签到 ,获得积分10
17秒前
yoayoa完成签到,获得积分10
17秒前
一步一步完成签到,获得积分10
18秒前
18秒前
驿寄梅花完成签到 ,获得积分10
19秒前
19秒前
pluto应助linxiaoting采纳,获得10
19秒前
19秒前
20秒前
20秒前
20秒前
EVE11完成签到,获得积分10
21秒前
隐形的冰海完成签到,获得积分10
22秒前
smiles发布了新的文献求助10
22秒前
狄百招发布了新的文献求助30
24秒前
25秒前
翁怜晴发布了新的文献求助10
26秒前
一杯落日发布了新的文献求助50
26秒前
阿尔法完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559672
求助须知:如何正确求助?哪些是违规求助? 3134219
关于积分的说明 9405978
捐赠科研通 2834245
什么是DOI,文献DOI怎么找? 1557967
邀请新用户注册赠送积分活动 727803
科研通“疑难数据库(出版商)”最低求助积分说明 716503