Coexistence of antiferromagnetism and glassy magnetic state and signature of quantum interference effects in the frustrated ternary silicides HoScSi and ErScSi

反铁磁性 签名(拓扑) 凝聚态物理 三元运算 挫折感 材料科学 物理 计算机科学 数学 几何学 程序设计语言
作者
Kavita Yadav,P Koushik,Saurabh Singh,Masato Hagihala,K. Mukherjee
出处
期刊:Physical review [American Physical Society]
卷期号:109 (22) 被引量:2
标识
DOI:10.1103/physrevb.109.224409
摘要

Determining the fundamental mechanisms that are responsible for the observed anomalies in electrical transport is a key objective in condensed matter physics. Among these, quantum interference effects such as electron-electron (e-e) interaction and weak localization (WL) effects play an important role in determining the low-temperature ($T$) electrical transport behavior in disordered systems. Here, we provide experimental evidence for the observation of quantum interference effects driven low-temperature resistivity (\ensuremath{\rho}) minima in HoScSi and ErScSi. Temperature dependent magnetic and neutron diffraction studies clearly establish that HoScSi undergoes a transition from a paramagnetic to a commensurate antiferromagnetic (AFM) state near ${T}_{1\mathrm{Ho}}\ensuremath{\sim}57$ K, which decreases to 28 K (${T}_{1\mathrm{Er}}$) in ErScSi. Furthermore, in HoScSi, an incommensurate AFM state is observed below \ensuremath{\sim}35 K. Additionally, cluster glass phases are also noted in both intermetallics at lower $T$, which coexist with the antiferromagnetic state. These observed features have been attributed to the presence of ferromagnetic (FM) and AFM exchange interactions. In addition to this, \ensuremath{\rho} minima are noted near 20 K (${T}_{\mathrm{minHo}}$) and 18 K (${T}_{\mathrm{minEr}}$) in HoScSi and ErScSi, respectively. The systematic analysis of the magnetic field and $T$ dependence of \ensuremath{\rho} indicates that the observed anomaly originates from a disorder-enhanced e-e interaction and the WL effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝莓味蛋挞完成签到,获得积分10
1秒前
2秒前
3秒前
5秒前
7秒前
dreamboat发布了新的文献求助10
7秒前
dingding发布了新的文献求助10
8秒前
传奇3应助LL采纳,获得10
8秒前
10秒前
mxy126354发布了新的文献求助10
13秒前
医疗实用废物完成签到,获得积分10
16秒前
16秒前
19秒前
20秒前
21秒前
红黄蓝发布了新的文献求助10
22秒前
小蘑菇应助千寒采纳,获得10
23秒前
小鲨鱼发布了新的文献求助10
23秒前
23秒前
23秒前
光亮的天德完成签到,获得积分20
24秒前
Jim发布了新的文献求助10
24秒前
lqqq12发布了新的文献求助10
25秒前
YH发布了新的文献求助10
25秒前
万能图书馆应助LNN采纳,获得10
26秒前
27秒前
朵拉发布了新的文献求助10
27秒前
yi一一发布了新的文献求助10
28秒前
29秒前
dreamboat完成签到,获得积分10
29秒前
32秒前
33秒前
anderson1738发布了新的文献求助10
34秒前
36秒前
swallow发布了新的文献求助10
36秒前
Lucas应助千寒采纳,获得10
37秒前
37秒前
LNN发布了新的文献求助10
38秒前
仂尤发布了新的文献求助10
39秒前
细心的青梦完成签到,获得积分10
40秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3711670
求助须知:如何正确求助?哪些是违规求助? 3260084
关于积分的说明 9912463
捐赠科研通 2973456
什么是DOI,文献DOI怎么找? 1630581
邀请新用户注册赠送积分活动 773469
科研通“疑难数据库(出版商)”最低求助积分说明 744274