Recent Progress in Brain Network Models for Medical Applications: A Review

计算机科学 认知科学 数据科学 心理学
作者
Chenfei Ye,Yixuan Zhang,Chen Ran,Ting Ma
出处
期刊:Health data science 卷期号:4
标识
DOI:10.34133/hds.0157
摘要

Importance: Pathological perturbations of the brain often spread via connectome to fundamentally alter functional consequences. By integrating multimodal neuroimaging data with mathematical neural mass modeling, brain network models (BNMs) enable to quantitatively characterize aberrant network dynamics underlying multiple neurological and psychiatric disorders. We delved into the advancements of BNM-based medical applications, discussed the prevalent challenges within this field, and provided possible solutions and future directions. Highlights: This paper reviewed the theoretical foundations and current medical applications of computational BNMs. Composed of neural mass models, the BNM framework allows to investigate large-scale brain dynamics behind brain diseases by linking the simulated functional signals to the empirical neurophysiological data, and has shown promise in exploring neuropathological mechanisms, elucidating therapeutic effects, and predicting disease outcome. Despite that several limitations existed, one promising trend of this research field is to precisely guide clinical neuromodulation treatment based on individual BNM simulation. Conclusion: BNM carries the potential to help understand the mechanism underlying how neuropathology affects brain network dynamics, further contributing to decision-making in clinical diagnosis and treatment. Several constraints must be addressed and surmounted to pave the way for its utilization in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
锦诗完成签到,获得积分10
2秒前
zhi芝完成签到 ,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
yn发布了新的文献求助10
5秒前
深情安青应助shinn采纳,获得10
6秒前
7秒前
7秒前
梓歆发布了新的文献求助10
8秒前
麦麦完成签到,获得积分10
8秒前
栗子发布了新的文献求助10
9秒前
蓝胖子完成签到,获得积分20
11秒前
玄川完成签到,获得积分10
12秒前
13秒前
JamesPei应助obaica采纳,获得10
14秒前
14秒前
15秒前
16秒前
幻月完成签到,获得积分10
16秒前
17秒前
麦克阿宇完成签到,获得积分10
18秒前
块块发布了新的文献求助10
19秒前
青衣北风发布了新的文献求助10
19秒前
shinn发布了新的文献求助10
20秒前
xuexi发布了新的文献求助10
21秒前
小灯完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528