高光谱成像
内容(测量理论)
预处理器
乘法函数
凯氏定氮法
校准
模式识别(心理学)
特征(语言学)
数据预处理
计算机科学
数据集
集合(抽象数据类型)
人工智能
多元统计
数学
生物系统
统计
化学
机器学习
语言学
哲学
有机化学
氮气
生物
程序设计语言
数学分析
作者
Guantao Xuan,Huijie Jia,Yuanyuan Shao,chengkun shi
标识
DOI:10.1016/j.saa.2024.124589
摘要
This study utilized hyperspectral imaging technology combined with mathematical modeling methods to predict the protein content of rice grains. Firstly, the Kjeldahl method was used to determine the protein content of rice grains, and different preprocessing techniques were applied to the spectral information. Then, a prediction model for rice grain protein content was developed by combining the spectral data with the protein content. After performing multiplicative scatter correction (MSC) preprocessing and selecting feature wavelengths based on successive projections algorithm (SPA), the multivariate linear regression (MLR) model showed the best prediction performance, with a calibration set R
科研通智能强力驱动
Strongly Powered by AbleSci AI