亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihongchi完成签到,获得积分10
8秒前
NexusExplorer应助欣怡采纳,获得10
11秒前
Sunny完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助石榴汁的书采纳,获得10
13秒前
无忧发布了新的文献求助10
15秒前
17秒前
muuuu发布了新的文献求助10
21秒前
Rita发布了新的文献求助10
22秒前
充电宝应助lululiya采纳,获得80
22秒前
甜甜雨莲完成签到 ,获得积分10
27秒前
28秒前
29秒前
sys549发布了新的文献求助10
32秒前
Guts发布了新的文献求助10
34秒前
满意人英完成签到,获得积分10
48秒前
hai完成签到,获得积分10
50秒前
sys549完成签到,获得积分10
51秒前
53秒前
53秒前
55秒前
子訡完成签到 ,获得积分10
57秒前
青阳发布了新的文献求助10
59秒前
石榴汁的书完成签到,获得积分10
59秒前
Xx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
CATH完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
信封里的太阳完成签到 ,获得积分10
1分钟前
青阳完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Guts发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助香蕉念波采纳,获得10
1分钟前
清爽代芹完成签到 ,获得积分10
1分钟前
搜集达人应助sh采纳,获得10
1分钟前
万能图书馆应助Guts采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475