已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:111: 102507-102507 被引量:2
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng发布了新的文献求助10
4秒前
泥嚎应助小卡采纳,获得10
4秒前
舒芙蕾完成签到,获得积分10
5秒前
FashionBoy应助朴实的小萱采纳,获得10
8秒前
小蘑菇应助Cheng采纳,获得10
10秒前
无幻完成签到 ,获得积分10
11秒前
儒雅香彤完成签到 ,获得积分10
11秒前
自觉凌蝶完成签到 ,获得积分10
12秒前
12秒前
不知道起啥名字完成签到 ,获得积分10
12秒前
清脆泥猴桃完成签到,获得积分10
14秒前
背后的傥完成签到,获得积分10
14秒前
15秒前
何东浩发布了新的文献求助10
15秒前
胡添傲发布了新的文献求助10
19秒前
Hshi完成签到 ,获得积分10
20秒前
衣吾余完成签到,获得积分10
23秒前
Wilddeer完成签到 ,获得积分10
23秒前
23秒前
科研通AI2S应助fb12000采纳,获得10
25秒前
25秒前
蜜呐发布了新的文献求助10
26秒前
烟花应助搞怪的山水采纳,获得10
26秒前
coolkid完成签到,获得积分0
27秒前
菠萝冰棒完成签到 ,获得积分10
27秒前
lx发布了新的文献求助10
28秒前
耶格尔完成签到 ,获得积分10
29秒前
Spark发布了新的文献求助10
30秒前
小耿完成签到 ,获得积分10
31秒前
超人完成签到 ,获得积分10
32秒前
32秒前
fb12000完成签到,获得积分10
34秒前
小虎应助蜜呐采纳,获得10
35秒前
Jello完成签到,获得积分10
37秒前
hihi完成签到,获得积分10
38秒前
清爽的傲易完成签到 ,获得积分10
43秒前
不甜完成签到,获得积分10
46秒前
47秒前
安等暖阳完成签到 ,获得积分10
50秒前
51秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168