A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
王王应助kklove采纳,获得20
3秒前
CAOHOU应助单薄的八宝粥采纳,获得10
3秒前
FashionBoy应助单薄的八宝粥采纳,获得10
4秒前
斯文败类应助优美紫槐采纳,获得10
4秒前
tomorrow完成签到,获得积分10
5秒前
5秒前
Mayday发布了新的文献求助10
5秒前
hx0107完成签到,获得积分20
5秒前
看文献了发布了新的文献求助10
6秒前
8秒前
9秒前
凯王爷应助彩虹小马采纳,获得10
9秒前
无花果应助坦率的之卉采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
爱听歌的书雪完成签到,获得积分10
11秒前
今后应助高高的夕阳采纳,获得10
13秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
wuchang发布了新的文献求助10
14秒前
弥浪发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
19秒前
阿星捌发布了新的文献求助10
20秒前
21秒前
enterdawn完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
24秒前
水云身发布了新的文献求助10
24秒前
CodeCraft应助vily采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535