清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nav完成签到 ,获得积分10
1秒前
yong完成签到 ,获得积分10
5秒前
雪山飞龙发布了新的文献求助10
17秒前
科目三应助科研通管家采纳,获得10
24秒前
乐观的星月完成签到 ,获得积分10
30秒前
帆帆帆完成签到 ,获得积分10
45秒前
鲤鱼听荷完成签到 ,获得积分10
45秒前
美丽的芙完成签到 ,获得积分10
53秒前
xiaoguoxiaoguo完成签到,获得积分10
53秒前
丰富咖啡完成签到,获得积分10
1分钟前
AA完成签到 ,获得积分10
1分钟前
路路完成签到 ,获得积分10
1分钟前
雪飞杨完成签到 ,获得积分10
1分钟前
林好人完成签到 ,获得积分10
1分钟前
鱼湘完成签到,获得积分10
1分钟前
科研浩完成签到 ,获得积分10
1分钟前
小木没有烦恼完成签到 ,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
2分钟前
jsinm-thyroid完成签到 ,获得积分10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
遗忘完成签到,获得积分10
2分钟前
卧虎发布了新的文献求助10
2分钟前
王佳亮完成签到,获得积分10
2分钟前
Brooks完成签到,获得积分10
2分钟前
卧虎完成签到,获得积分10
3分钟前
cadcae完成签到,获得积分10
3分钟前
merrylake完成签到 ,获得积分10
3分钟前
面汤完成签到 ,获得积分10
3分钟前
爱我不上火完成签到 ,获得积分10
3分钟前
hello完成签到,获得积分0
3分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
含蓄文博完成签到 ,获得积分10
3分钟前
淡然的剑通完成签到 ,获得积分10
3分钟前
麻花阳完成签到,获得积分10
3分钟前
浚稚完成签到 ,获得积分10
4分钟前
SUNNYONE完成签到 ,获得积分10
4分钟前
午后狂睡完成签到 ,获得积分10
4分钟前
rockyshi完成签到 ,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128227
求助须知:如何正确求助?哪些是违规求助? 4330971
关于积分的说明 13494015
捐赠科研通 4166813
什么是DOI,文献DOI怎么找? 2284193
邀请新用户注册赠送积分活动 1285201
关于科研通互助平台的介绍 1225621