A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小帅ok发布了新的文献求助10
刚刚
Sandy完成签到,获得积分10
1秒前
SciGPT应助小张采纳,获得10
1秒前
2秒前
pzh发布了新的文献求助10
2秒前
2秒前
迟梦琪发布了新的文献求助10
2秒前
艾科研发布了新的文献求助10
3秒前
CCR发布了新的文献求助10
3秒前
科研通AI6应助yanziwu94采纳,获得10
3秒前
3秒前
3秒前
顺心紫翠完成签到,获得积分10
4秒前
4秒前
ding应助Frose采纳,获得10
4秒前
科研通AI5应助西瓜采纳,获得10
4秒前
SciGPT应助Ccc采纳,获得10
5秒前
香蕉觅云应助Saya采纳,获得10
5秒前
昏睡的半莲完成签到,获得积分10
5秒前
英俊的铭应助大宝君采纳,获得20
5秒前
1101592875发布了新的文献求助10
6秒前
欢呼的初彤完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
婷婷完成签到,获得积分10
7秒前
7秒前
JamesPei应助李金文采纳,获得10
8秒前
打打应助平常的纸飞机采纳,获得10
8秒前
体贴代容完成签到,获得积分10
8秒前
CodeCraft应助拉萌采纳,获得10
9秒前
希望天下0贩的0应助ww采纳,获得10
9秒前
ShinEe发布了新的文献求助10
9秒前
慕青应助YRX采纳,获得10
10秒前
希望天下0贩的0应助一二采纳,获得10
10秒前
10秒前
无情依霜完成签到,获得积分10
10秒前
梦中有琦发布了新的文献求助10
10秒前
人沐发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543