A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助suer玉采纳,获得10
刚刚
顺心人达完成签到 ,获得积分10
1秒前
2秒前
深情安青应助frozensun采纳,获得10
2秒前
搜集达人应助LYD666采纳,获得10
2秒前
煎饼煎饼完成签到,获得积分10
3秒前
汉堡包应助股价采纳,获得10
4秒前
刘欣悦完成签到 ,获得积分10
5秒前
玥来玥好发布了新的文献求助10
6秒前
6秒前
英姑应助玩命的兔子采纳,获得10
7秒前
7秒前
忠诚卫士完成签到,获得积分10
7秒前
美满向薇发布了新的文献求助10
8秒前
落后翠柏发布了新的文献求助10
8秒前
丘比特应助冰点采纳,获得10
8秒前
ihuu完成签到,获得积分10
9秒前
9秒前
9秒前
gqz发布了新的文献求助10
9秒前
顶刊我来了完成签到,获得积分10
10秒前
林岳完成签到,获得积分10
10秒前
脑洞疼应助范yx采纳,获得10
11秒前
华仔应助zhaosibo020118采纳,获得10
12秒前
13秒前
林岳发布了新的文献求助10
13秒前
搜集达人应助Nov采纳,获得10
13秒前
14秒前
15秒前
等你下课完成签到,获得积分20
16秒前
科研通AI6应助佚名采纳,获得10
16秒前
16秒前
Akim应助落后翠柏采纳,获得10
16秒前
17秒前
哆啦B梦给哆啦B梦的求助进行了留言
18秒前
锦慜发布了新的文献求助30
18秒前
等你下课发布了新的文献求助10
19秒前
MeetAgainLZH发布了新的文献求助10
19秒前
CodeCraft应助老实的采蓝采纳,获得10
19秒前
gqz完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704