A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102507-102507 被引量:4
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT发布了新的文献求助10
3秒前
落雪完成签到 ,获得积分10
3秒前
Winnie完成签到 ,获得积分10
7秒前
绵羊座鸭梨完成签到 ,获得积分10
13秒前
领导范儿应助Winnie采纳,获得30
15秒前
kmzzy完成签到,获得积分10
16秒前
郝老头完成签到,获得积分0
19秒前
baa完成签到,获得积分10
19秒前
调皮平蓝完成签到,获得积分10
23秒前
猪鼓励完成签到,获得积分10
28秒前
30秒前
GG爆完成签到,获得积分10
33秒前
zxm完成签到,获得积分10
34秒前
小乙猪完成签到 ,获得积分0
36秒前
坚强的磬完成签到,获得积分10
36秒前
mrconli完成签到,获得积分10
39秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
大模型应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
落寞的幻竹完成签到,获得积分10
40秒前
ldr888完成签到,获得积分10
40秒前
儒雅的兔子完成签到 ,获得积分10
49秒前
Moonchild完成签到 ,获得积分10
51秒前
nano完成签到 ,获得积分10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
1分钟前
Jeffery426发布了新的文献求助10
1分钟前
bi完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
1分钟前
1分钟前
朝圣者发布了新的文献求助10
1分钟前
无心客完成签到,获得积分10
1分钟前
一个柔弱的读书人完成签到 ,获得积分10
1分钟前
郭德久完成签到 ,获得积分0
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
persi完成签到 ,获得积分10
1分钟前
牛牛完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293791
求助须知:如何正确求助?哪些是违规求助? 4443877
关于积分的说明 13831637
捐赠科研通 4327752
什么是DOI,文献DOI怎么找? 2375718
邀请新用户注册赠送积分活动 1370996
关于科研通互助平台的介绍 1335984