A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102507-102507 被引量:2
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真的西牛完成签到,获得积分10
1秒前
1秒前
4秒前
4秒前
4秒前
5秒前
jj完成签到 ,获得积分10
5秒前
含糊的白安完成签到,获得积分20
5秒前
6秒前
烟花应助活力的妙芙采纳,获得10
7秒前
德尔塔捱斯完成签到 ,获得积分10
8秒前
8秒前
bkagyin应助lllyq采纳,获得10
9秒前
yyyyyyyy发布了新的文献求助10
9秒前
橙橙星星完成签到,获得积分10
9秒前
xiao金发布了新的文献求助10
9秒前
10秒前
chlorine完成签到,获得积分10
10秒前
傲娇猫咪发布了新的文献求助10
11秒前
在文献的海洋里挖呀挖呀挖完成签到,获得积分10
13秒前
科研通AI2S应助liang采纳,获得10
13秒前
14秒前
14秒前
morena发布了新的文献求助10
15秒前
16秒前
cqhf2021完成签到 ,获得积分10
21秒前
传奇3应助XD采纳,获得10
22秒前
NexusExplorer应助Cristina2024采纳,获得100
23秒前
23秒前
开心应助penny采纳,获得10
26秒前
26秒前
pp应助单身的蓝血采纳,获得10
27秒前
dlynecust发布了新的文献求助10
28秒前
shengyufen发布了新的文献求助30
29秒前
zoushiyi完成签到 ,获得积分20
29秒前
29秒前
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112