作者
Muhammad Arqam Khan,Mei‐Chun Li,Kaihe Lv,Jinsheng Sun,Chaozheng Liu,Xinyue Liu,Haokun Shen,Liyao Dai,Shaine Mohammadali Lalji
摘要
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.