Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 计算机安全 语言学 哲学
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助RedBoy采纳,获得10
刚刚
李6666完成签到 ,获得积分10
刚刚
huhu完成签到,获得积分20
1秒前
11220完成签到,获得积分10
2秒前
2秒前
2秒前
小王发布了新的文献求助10
2秒前
senli2018发布了新的文献求助10
3秒前
4秒前
开朗惊蛰完成签到,获得积分10
4秒前
swenn_1完成签到 ,获得积分10
4秒前
隐形曼青应助fengliurencai采纳,获得10
4秒前
CodeCraft应助鱼选采纳,获得10
5秒前
6秒前
8秒前
Yolanda发布了新的文献求助10
8秒前
8秒前
8秒前
mmichaell完成签到,获得积分10
9秒前
9秒前
煜钧发布了新的文献求助30
9秒前
Freeman0721发布了新的文献求助10
9秒前
Akim应助hizto采纳,获得10
10秒前
11秒前
aa发布了新的文献求助10
11秒前
12秒前
12秒前
GUAN完成签到 ,获得积分10
13秒前
huhu发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
时深完成签到 ,获得积分10
15秒前
16秒前
Cherish完成签到,获得积分10
17秒前
spirit完成签到 ,获得积分10
17秒前
浮游应助大半个菜鸟采纳,获得10
17秒前
完美世界应助大半个菜鸟采纳,获得10
17秒前
velsaber发布了新的文献求助20
18秒前
ysky完成签到 ,获得积分10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453924
求助须知:如何正确求助?哪些是违规求助? 4561398
关于积分的说明 14282445
捐赠科研通 4485367
什么是DOI,文献DOI怎么找? 2456697
邀请新用户注册赠送积分活动 1447383
关于科研通互助平台的介绍 1422701