清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 计算机安全 语言学 哲学
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大雁完成签到 ,获得积分0
1秒前
xiliyusheng完成签到,获得积分10
8秒前
WebCasa完成签到,获得积分10
12秒前
17秒前
xiliyusheng发布了新的文献求助10
22秒前
科研通AI6应助赖胖胖采纳,获得50
36秒前
合不着完成签到 ,获得积分10
49秒前
张毅德完成签到 ,获得积分10
56秒前
1分钟前
nav完成签到 ,获得积分10
1分钟前
lling完成签到 ,获得积分10
2分钟前
邓洁宜完成签到,获得积分10
2分钟前
wood完成签到,获得积分10
2分钟前
赖胖胖发布了新的文献求助50
2分钟前
uppercrusteve完成签到,获得积分10
2分钟前
无奈的代珊完成签到 ,获得积分10
3分钟前
潇洒的语蝶完成签到 ,获得积分10
3分钟前
小宋完成签到,获得积分10
3分钟前
冰凌心恋完成签到,获得积分10
3分钟前
知行者完成签到 ,获得积分10
3分钟前
好运常在完成签到 ,获得积分10
3分钟前
秋夜临完成签到,获得积分0
4分钟前
Tong完成签到,获得积分0
4分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
小新小新完成签到 ,获得积分10
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
haly完成签到 ,获得积分10
6分钟前
7分钟前
炳灿完成签到 ,获得积分10
7分钟前
清澈的爱只为中国完成签到 ,获得积分10
8分钟前
8分钟前
顺心真完成签到 ,获得积分20
8分钟前
MchemG应助Li采纳,获得10
8分钟前
蓝意完成签到,获得积分0
9分钟前
vbnn完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
鲤鱼秋寒发布了新的文献求助10
9分钟前
吊炸天完成签到 ,获得积分10
9分钟前
zhaoty发布了新的文献求助20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565118
求助须知:如何正确求助?哪些是违规求助? 4649960
关于积分的说明 14689383
捐赠科研通 4591817
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463084