Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 计算机安全 语言学 哲学
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
炙热依瑶完成签到,获得积分10
1秒前
GG完成签到,获得积分20
3秒前
3秒前
夜行发布了新的文献求助30
4秒前
江河完成签到,获得积分10
5秒前
6秒前
6秒前
薛定谔不喜欢猫完成签到,获得积分10
7秒前
刘亚玲完成签到 ,获得积分10
7秒前
科研通AI2S应助林洁佳采纳,获得10
8秒前
9秒前
小刷子完成签到,获得积分10
9秒前
水123发布了新的文献求助10
9秒前
10秒前
咕嘟完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
大模型应助慧子采纳,获得10
12秒前
13秒前
王然发布了新的文献求助10
14秒前
好运连连完成签到,获得积分10
14秒前
14秒前
赞赞发布了新的文献求助10
15秒前
倔强完成签到 ,获得积分10
16秒前
蒋若风完成签到,获得积分10
16秒前
LYZSh发布了新的文献求助10
17秒前
张若虚完成签到,获得积分10
17秒前
17秒前
Leucalypt完成签到,获得积分10
18秒前
CodeCraft应助mcy采纳,获得200
19秒前
锦鲤发布了新的文献求助10
19秒前
西红柿鸡蛋面完成签到,获得积分20
19秒前
20秒前
无极微光应助xixi采纳,获得20
22秒前
23秒前
风趣青槐完成签到,获得积分10
23秒前
斯文败类应助galioo3000采纳,获得30
23秒前
大个应助Anita采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814