Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 哲学 语言学 计算机安全
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥猫啊平发布了新的文献求助10
1秒前
1秒前
林读书完成签到 ,获得积分10
2秒前
李妍庆发布了新的文献求助10
2秒前
hbhbj发布了新的文献求助10
2秒前
遆思畅完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
ldk完成签到,获得积分10
4秒前
renaissance发布了新的文献求助10
5秒前
orixero应助肥猫啊平采纳,获得10
7秒前
虚幻的素完成签到 ,获得积分10
8秒前
8秒前
活力发布了新的文献求助10
9秒前
hbhbj发布了新的文献求助10
9秒前
芯止谭轩完成签到,获得积分10
9秒前
电池博士完成签到,获得积分20
10秒前
Xulyun完成签到 ,获得积分10
11秒前
遆思畅发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
共享精神应助崔崔采纳,获得20
12秒前
爆米花应助yuanio采纳,获得10
12秒前
anny.white完成签到,获得积分0
13秒前
天马行空完成签到,获得积分10
13秒前
yuexi发布了新的文献求助10
14秒前
14秒前
hbhbj发布了新的文献求助10
16秒前
充电宝应助开放幻丝采纳,获得10
18秒前
Criminology34应助电池博士采纳,获得10
18秒前
大模型应助电池博士采纳,获得10
18秒前
嘻嘻哈哈应助JL采纳,获得10
18秒前
坦率灵槐应助JL采纳,获得10
18秒前
加油搬砖发布了新的文献求助10
19秒前
xr完成签到 ,获得积分10
19秒前
20秒前
大气的代芙完成签到,获得积分10
20秒前
丁一完成签到 ,获得积分10
20秒前
酷炫远山完成签到 ,获得积分10
22秒前
凤飞完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305985
求助须知:如何正确求助?哪些是违规求助? 4451844
关于积分的说明 13853249
捐赠科研通 4339378
什么是DOI,文献DOI怎么找? 2382507
邀请新用户注册赠送积分活动 1377530
关于科研通互助平台的介绍 1345146