Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 计算机安全 语言学 哲学
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zifeimo发布了新的文献求助10
刚刚
CipherSage应助wu采纳,获得10
1秒前
余柳发布了新的文献求助10
1秒前
斌冰冰发布了新的文献求助10
1秒前
nenoaowu发布了新的文献求助10
2秒前
兑现发布了新的文献求助10
2秒前
2秒前
斑驳完成签到,获得积分10
2秒前
2秒前
Sayhai发布了新的文献求助10
3秒前
3秒前
wanmy完成签到,获得积分10
3秒前
mengqing完成签到 ,获得积分10
3秒前
4秒前
4秒前
chrisio应助蛋蛋白采纳,获得10
5秒前
5秒前
在水一方应助SHIKI采纳,获得10
5秒前
battle完成签到 ,获得积分10
5秒前
5秒前
香蕉觅云应助liu采纳,获得10
6秒前
小蘑菇应助高翔采纳,获得10
7秒前
corainder发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Wow发布了新的文献求助10
8秒前
Lucas应助SZY采纳,获得10
9秒前
9秒前
FashionBoy应助谢同学采纳,获得10
9秒前
9秒前
9秒前
所所应助Sayhai采纳,获得10
9秒前
10秒前
有求必_应发布了新的文献求助10
10秒前
暮光不ling发布了新的文献求助10
11秒前
11秒前
孤独的夜行喵关注了科研通微信公众号
11秒前
11秒前
11秒前
mia发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403