Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 计算机安全 语言学 哲学
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
琦琦发布了新的文献求助10
刚刚
博观发布了新的文献求助10
1秒前
斯文败类应助ZiZi采纳,获得10
1秒前
缥缈千风发布了新的文献求助10
1秒前
nice1537完成签到,获得积分10
1秒前
1秒前
1秒前
郭飒发布了新的文献求助10
2秒前
orixero应助ksq采纳,获得10
2秒前
谦让秋莲发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
wen关闭了wen文献求助
3秒前
科研通AI6应助顺顺安采纳,获得10
3秒前
3秒前
狄百招发布了新的文献求助10
3秒前
玥越发布了新的文献求助10
4秒前
yuze_22发布了新的文献求助10
4秒前
桐桐应助魔幻茈采纳,获得10
4秒前
Natural发布了新的文献求助10
6秒前
Alma发布了新的文献求助10
6秒前
6秒前
高贵紫丝发布了新的文献求助10
7秒前
传奇3应助Refuel采纳,获得10
7秒前
活力雁枫完成签到,获得积分10
7秒前
7秒前
啊薇儿发布了新的文献求助10
8秒前
dai发布了新的文献求助30
8秒前
灵巧芝发布了新的文献求助10
8秒前
tony完成签到,获得积分10
9秒前
郭素玲发布了新的文献求助10
9秒前
Zz发布了新的文献求助20
9秒前
9秒前
辰枫吖发布了新的文献求助20
10秒前
10秒前
WStarry发布了新的文献求助30
10秒前
Orange应助cqnusq采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135