Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis

融合 特征(语言学) 模式识别(心理学) 计算机科学 混沌(操作系统) 傅里叶变换 傅里叶变换红外光谱 人工智能 数学 物理 数学分析 光学 哲学 语言学 计算机安全
作者
Yang Du,Cheng Chen,Chen Chen,Yue Liu,Lijun Wu,Enguang Zuo,Xiaoyi Lv
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:163: 111911-111911
标识
DOI:10.1016/j.asoc.2024.111911
摘要

Chaos theory is a mathematical theory that studies nonlinear dynamical systems and has found extensive applications in the disease auxiliary diagnosis. FTIR spectra is a technique based on infrared spectroscopy that provides information about molecular vibrations, rotations, and vibrational-rotational energy levels by recording the absorption spectrum of a sample in the infrared radiation range. This technology has gained attention for its extensive applications in the disease auxiliary diagnosis. However, due to the limited amount of molecular information captured by FTIR spectra and intricate clinical diagnostic scenarios, this study introduces an innovative approach by combining FTIR spectra with chaos theory. This novel method for disease prediction is proposed and validated using FTIR spectra datasets from various diseases, including glioma, non-small cell lung cancer (NSCLC), and systemic lupus erythematosus (SLE). The experimental results demonstrate that the proposed Low-rank Tensor Features Fusion-BiGRU (LTFF-BiGRU) model achieves competitive outcomes in three datasets. Comparing the spectral features, inputting spectral-chaotic fusion features into LTFF-BiGRU models can effectively improve the average Accuracy (Acc) by 3.5%, average Precision (Pre) by 3.30%, average Sensitivity (Sen) by 2.37%, average Specificity (Spe) by 4.07%, average F1 score by 3.10%, and average Area Under the ROC Curve (AUC) by 3.23%. Through low-rank tensor fusion, the correlations and interaction patterns between different feature data can be effectively captured, thus extracting a more comprehensive and enriched feature representation to enhance disease diagnosis results further. This research marks the first demonstration of chaotic characteristics in FTIR spectra and pioneers the exploration of employing low-rank tensor fusion between spectral features and chaotic features. The research signifies a crucial step in integrating FTIR spectra with chaos theory in the disease auxiliary diagnosis, paving the way for further exploration in this promising interdisciplinary field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助欣喜的妙竹采纳,获得10
1秒前
tian完成签到,获得积分0
1秒前
2秒前
3秒前
Cynthia完成签到,获得积分10
3秒前
潜心如水发布了新的文献求助10
4秒前
酷波er应助沉静的曼荷采纳,获得10
4秒前
VDC应助ceeray23采纳,获得30
4秒前
研友_VZG7GZ应助沈梓兴采纳,获得10
5秒前
冯xiaoni发布了新的文献求助30
5秒前
5秒前
科研狗完成签到,获得积分10
6秒前
6秒前
派大星的海洋裤完成签到,获得积分10
6秒前
qingfengnai完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
panjunlu完成签到,获得积分10
8秒前
kenyvvv发布了新的文献求助10
10秒前
勤劳滑板发布了新的文献求助10
10秒前
Lynn完成签到,获得积分10
11秒前
浅浅依云完成签到,获得积分10
12秒前
木寻寻发布了新的文献求助10
12秒前
小六九完成签到 ,获得积分10
14秒前
斯文败类应助NANFENGSUSU采纳,获得10
14秒前
小宋娘亲完成签到 ,获得积分10
14秒前
XI完成签到 ,获得积分10
16秒前
16秒前
yeezy123发布了新的文献求助30
17秒前
NexusExplorer应助起床别睡了采纳,获得10
19秒前
共享精神应助小樊啦采纳,获得10
19秒前
研究生发布了新的文献求助10
21秒前
21秒前
LK完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
我爱学习呢完成签到,获得积分10
23秒前
23秒前
老迟到的澜完成签到,获得积分10
24秒前
欧气青年完成签到,获得积分10
24秒前
NANFENGSUSU发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752