Study on Grain Boundary Mechanical Behaviors of Polycrystalline γ-TiAl Using Molecular Dynamics Simulations

微晶 晶界 分子动力学 材料科学 动力学(音乐) 复合材料 冶金 微观结构 物理 化学 计算化学 声学
作者
Wenjuan Zhao,Maoqing He,Chunliang Li,Wei Chen
出处
期刊:Metals [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 779-779
标识
DOI:10.3390/met14070779
摘要

In this study, the molecular dynamics (MD) method was used to study the tensile deformation of polycrystalline γ-TiAl with complex and random grain orientations. Firstly, the tensile deformation was simulated with different average grain sizes (8.60 nm, 6.18 nm, and 4.50 nm) and strain rates (1 × 108 s−1, 5 × 108 s−1, and 1 × 109 s−1). The results show that the peak stress increases with an increase in tensile strain rate, and the peak stress decreases as the grain size decreases, showing an inverse Hall–Petch effect. Upon observing atomic configuration evolution during tensile deformation, it is found that the grain boundary is seriously distorted, which indicates obvious grain boundary sliding occurring. With a further increase in the loading, some dislocations nucleate at the grain boundaries and propagate towards the interior of the grains along the grain boundaries, which demonstrates that dislocation motion is the primary coordination of the mechanical process of the grain boundaries. The dislocation density near the grain boundaries continues to increase, leading to the generation of micro-cracks and eventually causing material failure. Another interesting phenomenon is that the grains rotate, and the specific rotation angle values of each grain are quantitatively calculated. Grain rotation relaxes the stress concentration near the grain boundaries and plays a toughening role. Consequently, the plastic deformation behaviors of polycrystalline γ-TiAl are achieved through the grain boundary mechanical process, that is, grain boundary sliding and grain rotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助拉拉采纳,获得10
1秒前
千里江山一只蝇完成签到,获得积分10
1秒前
彩色的夏瑶完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
teresa完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
无花果应助生动路人采纳,获得10
3秒前
4秒前
温暖的代桃完成签到 ,获得积分10
5秒前
sdahjjyk完成签到 ,获得积分10
5秒前
栀雨味发布了新的文献求助10
5秒前
酸奶山茶柚完成签到,获得积分10
6秒前
6秒前
劲秉应助科研大捞采纳,获得10
6秒前
zzh完成签到,获得积分10
6秒前
您的帮助将会点亮世界完成签到,获得积分10
6秒前
6秒前
卡卡滴滴发布了新的文献求助10
6秒前
梅林渔夫完成签到,获得积分10
6秒前
lt完成签到,获得积分10
6秒前
7秒前
即使熟悉过完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
iwbs0326发布了新的文献求助10
9秒前
9秒前
unique发布了新的文献求助10
10秒前
清晨完成签到,获得积分10
10秒前
SciGPT应助小叶子采纳,获得10
10秒前
10秒前
聪明的半仙完成签到 ,获得积分10
10秒前
可爱的函函应助猪猪hero采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809