Real-time Concentration Detection of Al Dust Using GRU-based Kalman Filtering Approach

卡尔曼滤波器 计算机科学 环境科学 遥感 人工智能 地质学
作者
Fengyu Zhao,Wei Gao,LU Jian-xin,Haipeng Jiang,Jihao Shi
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:189: 154-163 被引量:6
标识
DOI:10.1016/j.psep.2024.06.052
摘要

Kalman filter algorithms have been widely used in dust environment concentration detection systems. However, in industrial environments, methods such as KF and median filtering usually require about 10 s of detection time, which cannot meet the requirements of online real-time detection. For this reason, this present study proposes a framework that combines a gated recirculation unit (GRU) with the KF method to achieve online real-time detection of dust concentration. In this framework, the GRU is mainly responsible for handling dynamic and nonlinear characteristics and capturing instantaneous concentration trends. On the other hand, the Kalman filter utilizes its superior state estimation capability to provide more accurate system state estimation by fusing real-time predictions from GRU and sensor measurements. The results show that the KFGRU method is superior to the conventional linear filtering method with a response time of less than 2 s and can detect dust concentration online in real-time. In terms of prediction accuracy, the deviation value of the curve processed by the KFGRU method is only 0.334, which is a significant breakthrough compared with the Kalman filter algorithm 0.755, the sliding average method 0.843, and the median filter method 0.849 (the smaller the deviation value, the higher the prediction accuracy). This study provides a comprehensive and innovative approach for dust concentration monitoring in dust reduction and explosion suppression systems, which not only meets the real-time requirement but also makes important progress in explosion safety management. This will provide more reliable and advanced technical support for dust control and safety in industrial production processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
粱夏烟完成签到,获得积分10
1秒前
是媛媛完成签到,获得积分10
3秒前
薰硝壤应助夜谈十记采纳,获得10
4秒前
大模型应助SEAMUS采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
yowgo发布了新的文献求助30
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得50
6秒前
Singularity应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
乐观紫霜应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
盒子应助科研通管家采纳,获得10
7秒前
萧水白应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得30
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
盒子应助科研通管家采纳,获得10
8秒前
CodeCraft应助马tttt采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
充电宝应助洁净的文涛采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得30
8秒前
wanci应助我是鸡汤采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
shiwo110完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
酷波er应助AIR采纳,获得10
11秒前
ZLY给ZLY的求助进行了留言
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870