Real-time Concentration Detection of Al Dust Using GRU-based Kalman Filtering Approach

卡尔曼滤波器 计算机科学 环境科学 遥感 人工智能 地质学
作者
Fengyu Zhao,Wei Gao,LU Jian-xin,Haipeng Jiang,Jihao Shi
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:189: 154-163 被引量:6
标识
DOI:10.1016/j.psep.2024.06.052
摘要

Kalman filter algorithms have been widely used in dust environment concentration detection systems. However, in industrial environments, methods such as KF and median filtering usually require about 10 s of detection time, which cannot meet the requirements of online real-time detection. For this reason, this present study proposes a framework that combines a gated recirculation unit (GRU) with the KF method to achieve online real-time detection of dust concentration. In this framework, the GRU is mainly responsible for handling dynamic and nonlinear characteristics and capturing instantaneous concentration trends. On the other hand, the Kalman filter utilizes its superior state estimation capability to provide more accurate system state estimation by fusing real-time predictions from GRU and sensor measurements. The results show that the KFGRU method is superior to the conventional linear filtering method with a response time of less than 2 s and can detect dust concentration online in real-time. In terms of prediction accuracy, the deviation value of the curve processed by the KFGRU method is only 0.334, which is a significant breakthrough compared with the Kalman filter algorithm 0.755, the sliding average method 0.843, and the median filter method 0.849 (the smaller the deviation value, the higher the prediction accuracy). This study provides a comprehensive and innovative approach for dust concentration monitoring in dust reduction and explosion suppression systems, which not only meets the real-time requirement but also makes important progress in explosion safety management. This will provide more reliable and advanced technical support for dust control and safety in industrial production processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助余温煮鱼采纳,获得10
刚刚
科研通AI2S应助wyx采纳,获得10
1秒前
HUIZHEV5发布了新的文献求助10
1秒前
CN_PH发布了新的文献求助10
2秒前
2秒前
2秒前
SHIFARG完成签到,获得积分10
2秒前
3秒前
小丛完成签到 ,获得积分10
3秒前
3秒前
3秒前
laochen发布了新的文献求助10
3秒前
4秒前
新手鼓手发布了新的文献求助10
4秒前
5秒前
安详的语蕊完成签到,获得积分10
5秒前
上官若男应助gaga采纳,获得10
6秒前
大模型应助科研通管家采纳,获得30
6秒前
wanci应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得80
7秒前
无花果应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
11111111发布了新的文献求助10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
MchemG应助科研通管家采纳,获得30
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070