RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:14
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张一二完成签到,获得积分10
刚刚
Barium发布了新的文献求助10
刚刚
lux丶完成签到,获得积分10
1秒前
风中桐完成签到,获得积分10
1秒前
小亮哈哈发布了新的文献求助10
1秒前
坏水发布了新的文献求助10
1秒前
July完成签到,获得积分10
4秒前
感动友桃完成签到,获得积分10
6秒前
cantaloupe完成签到,获得积分10
6秒前
郝飞飞完成签到,获得积分10
7秒前
Lucas应助悠悠夏日长采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
away发布了新的文献求助10
8秒前
8秒前
8秒前
Barium完成签到,获得积分10
9秒前
time关注了科研通微信公众号
9秒前
小马甲应助Ashley采纳,获得10
9秒前
小李发布了新的文献求助10
11秒前
11秒前
张一二发布了新的文献求助10
11秒前
坏水完成签到,获得积分10
11秒前
bkagyin应助Auh采纳,获得10
12秒前
乐乐应助李大锤采纳,获得10
13秒前
cjg发布了新的文献求助10
13秒前
小蘑菇应助N9采纳,获得10
13秒前
无限续完成签到,获得积分10
14秒前
14秒前
杨鹏发布了新的文献求助10
14秒前
14秒前
14秒前
Hello应助坦率灵槐采纳,获得10
15秒前
bkagyin应助安晨采纳,获得10
16秒前
贾福运发布了新的文献求助10
16秒前
小羊完成签到,获得积分10
16秒前
时尚青柏发布了新的文献求助10
16秒前
17秒前
丫丫发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921