RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
L. Q. Qin,Chang Wu,Zhou G. Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
苞米公主发布了新的文献求助10
2秒前
2秒前
桐桐应助闻歌采纳,获得10
3秒前
4秒前
5秒前
ossantu发布了新的文献求助10
5秒前
开放访梦发布了新的文献求助10
6秒前
戴小夫完成签到,获得积分10
8秒前
8秒前
田田田田完成签到,获得积分10
8秒前
10秒前
11发布了新的文献求助10
10秒前
11秒前
11秒前
Why发布了新的文献求助10
11秒前
情怀应助含蓄心锁采纳,获得10
12秒前
tRNA完成签到,获得积分10
14秒前
15秒前
zpp完成签到 ,获得积分10
15秒前
明理小凝完成签到 ,获得积分10
17秒前
天行健发布了新的文献求助10
17秒前
甜甜圈完成签到 ,获得积分10
18秒前
Ayao完成签到,获得积分10
20秒前
21秒前
22秒前
开放访梦完成签到,获得积分10
22秒前
yinzy完成签到,获得积分10
23秒前
英姑应助nansu采纳,获得10
24秒前
生动白开水完成签到,获得积分10
27秒前
小鱼应助生姜采纳,获得20
27秒前
承序完成签到,获得积分10
28秒前
Orange应助破茧采纳,获得10
29秒前
芽芽豆完成签到 ,获得积分10
31秒前
32秒前
33秒前
lin发布了新的文献求助10
36秒前
ccyang发布了新的文献求助10
36秒前
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194