RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:3
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gsj完成签到,获得积分10
3秒前
4秒前
5秒前
秋天完成签到,获得积分10
6秒前
淡定的惜关注了科研通微信公众号
9秒前
Zhy发布了新的文献求助10
9秒前
10秒前
蛋挞完成签到,获得积分10
12秒前
李健应助Junning采纳,获得10
14秒前
14秒前
tingting9发布了新的文献求助10
15秒前
16秒前
爆米花应助mark采纳,获得10
17秒前
17秒前
爱看文献的小恐龙完成签到,获得积分10
18秒前
小饼干完成签到 ,获得积分10
20秒前
萧瑟处完成签到 ,获得积分10
21秒前
21秒前
22秒前
孙燕应助鹤鸣采纳,获得30
23秒前
24秒前
loski发布了新的文献求助10
26秒前
随便不放假完成签到 ,获得积分10
27秒前
淡定的惜发布了新的文献求助10
29秒前
威武的亦绿完成签到,获得积分10
29秒前
木丁完成签到,获得积分10
30秒前
30秒前
33秒前
量子星尘发布了新的文献求助30
35秒前
孙燕应助成就山河采纳,获得10
36秒前
37秒前
领导范儿应助幸福大白采纳,获得30
38秒前
谓风发布了新的文献求助10
38秒前
39秒前
q1356478314应助天白采纳,获得10
39秒前
Hanni完成签到 ,获得积分10
39秒前
40秒前
yixiaolou发布了新的文献求助10
40秒前
Junning发布了新的文献求助10
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174