RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:3
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜发布了新的文献求助20
刚刚
Fine发布了新的文献求助10
2秒前
Yuelong完成签到,获得积分10
3秒前
5秒前
dong应助Yuelong采纳,获得10
8秒前
bingsu108完成签到,获得积分10
9秒前
小岚花发布了新的文献求助10
11秒前
CodeCraft应助凉茶采纳,获得10
11秒前
脑洞疼应助YZQ采纳,获得10
12秒前
琳琳完成签到,获得积分10
12秒前
华仔应助俏皮的白柏采纳,获得10
13秒前
羊洋洋完成签到,获得积分20
13秒前
最爱地瓜和虾滑完成签到 ,获得积分10
15秒前
yar给聪慧的草丛的求助进行了留言
15秒前
奋斗雁山发布了新的文献求助10
15秒前
16秒前
查到文献了吗完成签到,获得积分10
16秒前
FashionBoy应助Lee采纳,获得10
16秒前
Elvira完成签到,获得积分10
16秒前
18秒前
20秒前
易酰水烊酸应助Onism采纳,获得10
20秒前
青岚完成签到 ,获得积分10
20秒前
21秒前
tay发布了新的文献求助10
22秒前
23秒前
pluto应助一直小虾米采纳,获得10
23秒前
双楠应助不想采纳,获得10
25秒前
26秒前
Luobing完成签到,获得积分10
27秒前
研友_LXjjOZ完成签到,获得积分10
27秒前
上官若男应助蔚蓝的天空采纳,获得10
28秒前
slr完成签到,获得积分10
28秒前
逆境发布了新的文献求助10
28秒前
29秒前
草莓布丁发布了新的文献求助80
30秒前
凉茶发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028