RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:3
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Green完成签到,获得积分10
1秒前
2秒前
小木子完成签到,获得积分10
4秒前
舟遥遥完成签到,获得积分10
5秒前
华仔应助大橙子采纳,获得10
7秒前
桐桐应助Bismarck采纳,获得10
11秒前
CLY完成签到,获得积分10
12秒前
13秒前
rita_sun1969完成签到,获得积分10
14秒前
研友_8K2QJZ完成签到,获得积分10
14秒前
蝴蝶完成签到 ,获得积分10
15秒前
ARIA完成签到 ,获得积分10
15秒前
大橙子发布了新的文献求助10
18秒前
Bismarck完成签到,获得积分20
19秒前
19秒前
爱笑子默完成签到,获得积分10
20秒前
20秒前
一点完成签到,获得积分10
22秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
22秒前
DezhaoWang完成签到,获得积分10
23秒前
知犯何逆发布了新的文献求助10
24秒前
原本完成签到,获得积分10
24秒前
Bismarck发布了新的文献求助10
25秒前
苗条丹南完成签到 ,获得积分10
27秒前
yu完成签到 ,获得积分10
30秒前
skyleon完成签到,获得积分10
30秒前
无心的天真完成签到 ,获得积分10
31秒前
Engen完成签到,获得积分20
31秒前
32秒前
学术小垃圾完成签到,获得积分10
32秒前
dreamwalk完成签到 ,获得积分10
32秒前
黄淮科研小白龙完成签到 ,获得积分10
33秒前
齐嫒琳完成签到,获得积分10
35秒前
研友_Lav0Qn完成签到,获得积分10
35秒前
大橙子发布了新的文献求助10
36秒前
GreenT完成签到,获得积分10
36秒前
鳄鱼队长完成签到,获得积分10
37秒前
Zengyuan完成签到,获得积分10
37秒前
研友_Lav0Qn发布了新的文献求助10
38秒前
perry4rosa完成签到,获得积分0
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022